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Abstract.  Geopotential computation in general did not present numerical problems in older models where order 
and degree were as low as 30. However with the appearance of much higher order and degree the older 
conventional algorithms could not be used anymore. The kernel of such algorithms is the recursive computation 
of the Legendre polynomials. They must be computed in their normalized recursions and variants to avoid 
numerical flaws at a cost of more expensive processing times mainly due to the need of square roots 
computations. This paper outlines the main implementation aspects of the geopotential computation and 
derivatives to higher order and degree. The codes were tested up to 2159 order and 2190 degree without any 
noticeable flaw. It is expected some numerical degradation near the poles, however to the 0.000001 of 
proximity, i.e. 89.999999 latitude, no problems are reported. Computer codes were developed in double 
precision and are freely available in Fortran-77 and ANSI-C languages. 
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1. Introduction 

Older models of harmonics coefficients did not need analysis or optimization for the 
numerical computation of geopotential. They were mainly devoted to ways of avoiding 
singularities and algebraic modifications of the original geopotential formula (Cunningham, 
1970; Pines, 1973). The coefficients barely arrived at higher order and degree, e.g. 30 for 
GEM9 and 10 models (Lerch et al., 1979), to cause computational problems in geopotential 
computation. Such computation requires calculation of the Legendre polynomials, which 
should be recursively evaluated for high order and degree. One of the works concerned with 
numerical problems when computing the Legendre polynomials were from Lundberg and 
Schutz (1988) whom analyzed several recursions for the Legendre polynomials in fully 
normalized form up to order/degree 180. Nowadays the gravitational models easily start from 
order/degree 360 like EGM96 model (Lemoine et al., 1998) up to more than order/degree 
2100 like EGM2008 (Pavlis et al., 2008). As such many different algorithms overcoming 
numerical hindrances had to be drawn, see e.g. Fantino and Casotto (2009). Herein one 
describes the standard-forward-column implementation proposed by Holmes and Featherstone 
(2002) which is believed to be numerically one of the most efficient algorithms. They are 
quite suited for geopotential evaluation and Earth orbit computations. Some representative 
results are also drawn to show the capabilities of the codes implemented. Sources codes as 
well as test codes are provided in both Fortran-77 and ANSI-C languages (Kuga and Carrara, 
2012). 
 
2. Geopotential 

A material point (body) subject to attraction by a non-central gravitational field (Earth) 
suffers disturbances due to non-spherical and non-symmetrical distribution of its mass. This 
uneven distribution of mass is expressed by the so-called coefficients of spherical harmonics. 
Then the potential of a body relative to the Earth is calculated in a generic form by: 
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where V is the potential, G is the universal gravitational constant, M is the Earth mass, r is the 
distance to body from the Earth center, a is the Earth equatorial radius,  is the longitude of  
body, Ψ  is the geocentric latitude of body, Pnm are the Legendre polynomials of order n and 
degree m , nmC , nmS  are the spherical harmonics coefficients. 

 
2.1 Spherical Harmonics Coefficients 

According to Equation 1, the coefficients should represent faithfully the irregular shape of 
the distribution of the Earth's mass, so that the model of potential is represented properly. The 
determination of these coefficients is obtained experimentally by reduction and data analysis 
of artificial satellites and also from gravimetric methods. 

Currently all the harmonics coefficients are listed in its fully normalized form, therefore 
the relation with the non-normalized ones is: 
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where n is the degree, m is the order, 
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m

m
m , and C , S  are the fully normalized 

coefficients. The C coefficients with m=0 are called zonal coefficients, and the S with m=0 
are null, i.e. 00 nS . The remaining coefficients C and S (those for 1m ) are called the 

sectoral coefficients, when nm  , and tesseral coefficients when nm  . Therefore, in this 
case 1m , and Equation 2 can be deployed as: 
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where nmC  and nmS  correspond to the full normalization of the coefficients nmC  and nmS . 

 
2.2 Fully normalized Legendre Polynomial recursion 
 When one considers fully normalized harmonic coefficients, the associated Legendre 
polynomials nmP  should also be fully normalized, so that Equation 1 modeling the 
geopotential is compatible. Thus it takes the following form: 
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For the computation of fully normalized Legendre polynomials it was used the forward 
columns method described in Holmes and Featherstone (2002). This recursion is the most 
used for computing )(nmP and is described below: 
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For the sake of notational simplicity the dependency of P on cos  is represented by  P , 

where symbol   is the colatitude, i.e.,   o90 . When mn  , the recursion described by 



Equation 9 is used. The initial values are 1)(0,0 P ,   tP , 301   and   uP , 311  , where 
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Computationally this transformation provides better numerical accuracy since, after 
normalization, C , S  and P  have better numerically conditioned values to perform 
calculations and do not introduce factorials. Such calculations can produce values that makes 
computational representation troublesome (large positive or negative exponents), prone to 
overflows/underflows, and therefore susceptible to numerical errors. 
 
2.3 Trigonometric recursion of cos(mλ) and sin(mλ) 

One also applies recursion formulas for trigonometric functions, so as to avoid the 
explicit evaluation of cos(mλ) and sin(mλ), such as: 

       sin1sincos1coscos  mmm ,          (10) 
       sin1coscos1sinsin  mmm .          (11) 

It only needs sin  and cos  to start the recursion for M,,m 1 . 
 

2.4 Forward column recursion implementation 
To implement the algorithm, one prefers to reverse the order of computation of the 

summation, where the outer loop in m is first computed. One will follow closely the approach 
described by Holmes and Featherstone (2002). Let us rewrite the geopotential summation as: 
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Next define the inner summation components by: 
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    mSmCm XmXm  sincos  ,           (14) 

where  is an integer that depends on m. Therefore 
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The outer loop starts increasing M,,0m  . For each m, all the dependencies of 
M,,mn   are evaluated. For nm   the recursion uses Equation 9 to start the polynomial 

recursion. Then recursion of Equation 5 is used up to Mn  , and the inner sums are evaluated 
by Equations 13 and 14. Figure 1 shows the mechanization of the algorithm. 

An additional computational saving is to pre-compute and store mmP  and mq  for 
M,,0m   using both Equations 9 and 16: 
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starting with 1oq . In the subroutine (or procedure) it is performed before starting the main 
m and n loops. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Geopotential gradient and acceleration computation 
Here one describes the mathematical details of the recursions implemented for computing 

the geopotential gradient. For that one needs the recursion of the first derivative 1
nmP  of the 

Legendre polynomial: 

      mn,PfPtnPu m,nnmnmnm    1
1 ,         (17) 

with  fnm given by: 
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One first evaluates the gradient of the potential in terms of spherical coordinates r,, . For 
  it may be computed by: 
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with mSmC XX ,  given by Equations 13-14. For   one needs the first derivative of the 
Legendre polynomial, Equation 17: 
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For r : 
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Figure. 1. Forward recursion schematic (source: Holmes and Featherstone, 2002) 



Finally, the transformation from spherical to cartesian coordinates takes into account the 
partial derivatives relating them and is achieved by: 
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4. Results 

Herein one shows some outcomes from the source code implemented according to the 
formulations described. The full EGM 2008 geopotential model (Pavlis et al., 2008) was used 
to generate the results.  
 
4.1 Geopotential results 

To show the numerical behavior at the singularities near the poles the geopotential was 
computed to order/degree n = m = 90. It is claimed that EGM 2008 captures most of the 
Grace geopotential model, considered the best one generated from satellite data, when it is 
truncated at least to 90 order and degree. 
 Table 1 shows the perturbed geopotential, i.e. the geopotential minus the GM/r term 
(around 62494813.9631322 m2/s2) which is the dominant value, near the poles (north and 
south). This way it is possible to analyze the variation at pole proximity in terms of changes 
of significant figures. Three longitudes were also taken into account (0, 120, 240) although 
longitude values are nearly irrelevant close to the poles (undefined longitude). It is seen that 
no major numerical problem arose up to 0.000001 of closeness to either north or south pole, 
and the 5 to 6-th significant figure is affected, meaning that the geopotential value is affected 
in the digit right after comma. Logically the dependency with longitude becomes negligible 
when approaching the poles. 
 Figure 2 shows the convergence of the perturbed geopotential value (geopotential value 
minus GM/r term of each case) with increasing n, m at mid latitudes (45), for altitude 0m. 
The longitude was arbitrarily fixed in -40. The upper graphic shows the geopotential values 
to increasing n, m at 45 of north latitude. The lower graphic shows the same but to -45 of 
south latitude. It is seen that depending on the required accuracy it is neither wise nor 
beneficial to compute the geopotential using the full EGM 2008 up to 2159 order and 2190 
degree. The price to pay is that the CPU time increases unwieldy without gaining much more 
accuracy, making cost (CPU) benefit (accuracy) ratio unfavorable. 
 
Table 1 – Perturbed geopotential value for n=m=90 and altitude 0m, near the poles 
Longitude 
() 

 =  
0.01 

 =  
0.0001 

 =  
0.000001 

 =  
179.99 

 =  
179.9999 

= 
179.999999 

0 -67364.80815 -67364.98690 -67364.98866 -67785.42128 -67785.45193 -67785.45221 

120 -67365.15018 -67364.99032 -67364.98869 -67785.44560 -67785.45217 -67785.45221 

240 -67364.99839 -67364.98881 -67364.98868 -67785.47909 -67785.45252 -67785.45221 

 
4.2 Short orbit integration 

For depicting the performance of the codes for geopotential spherical derivatives and 
acceleration, short orbit integration was exercised. A fixed-step Runge-Kutta 4 (RK4) was 
used as baseline numerical integrator. It evaluates ODEs (Ordinary Differential Equations) by 



calling the derivatives 4 times per integration step. A 10 seconds step-size was fixed and 100 
minutes of integration was carried out. This is typically one period of orbit of LEO (Low 
Earth Orbit) satellites (around 700-800km altitude). Explicitly the following set of 6 EDOs 
was solved: 

gav

vr






,                   (26) 

where ga  is the acceleration due to the geopotential in the inertial frame. 

 
That means that the right side of Equation 26 was in total evaluated 6004 times (4 times 

per step with 600 steps), using the RK4 integrator. Because the geopotential acceleration must 
be evaluated in the body fixed ITRF (International Terrestrial Reference Frame) system, a 
simple conversion of inertial position to ITRF position was used, accounting only for the 
sidereal rotation around the z-axis. The initial sidereal angle was computed at the beginning 
and then, inside the derivative function of EDOs, it was updated using the sidereal rotation 
rate. The ITRF position is then used to evaluate the geopotential acceleration through 
Equation 24. Finally the ITRF acceleration is converted back to inertial using the same 
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Figure 2. Perturbed geopotential for mid latitudes (45) vs increasing n,m  
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sidereal rotation. For computational evaluation such rough approach is considered sufficient 
for the sake of comparison between the orbit integration discrepancies to several truncation 
levels of the geopotential recursions. Two types of LEO orbits were also considered as 
representatives of most of the LEO orbit integration applications: 
 Nearly polar sunsynchronous orbit of CBERS (China Brazil Earth Resources Satellite), 

780km altitude 
 Low inclination (25º) circular orbit of SCD (Brazilian Data Collection Satellite), 750km 

altitude 
A desktop PC with Intel Core2 QUAD CPU Q6600 at 2.4GHz and 3.25GB of RAM 

memory was used, under Microsoft Windows XP Operating System. The Fortran code was 
compiled with Compaq Visual Fortran Professional Edition 6, without any optimization 
option.  

Figure 3 shows the CPU times increase with increasing levels of order and degree 
truncation. The ordinate is in log scale so that it is clearly seen the exponential growth of the 
CPU times with order/degree. For one orbit integration of both types of orbits it took around 
1000s (16.7 minutes) of CPU time when using the full model (order 2159, degree 2190). 

 
For orbit accuracy analysis purposes, the full model (order 2159 degree 2190) was used as 

reference orbit. Figure 4 shows the discrepancies along the time for different levels of 
truncation compared to the full model, in terms of radial, normal, and along-track (RNT) 
components, for the near polar orbit (CBERS). The left side plots shows up to 25 m difference 
in along-track direction for truncation on n=m=10. The right side shows differences for 
truncation from n=m=60 to 240. For CBERS orbit types (near polar circular) it is seen that to 
keep millimeter level accuracy the n, m truncation should be somewhere between 120 and 
240. 

Figure 5 shows the discrepancies along one orbit for several truncations compared to the 
full model, in terms of RNT components, for the near equatorial orbit (SCD). The left side 
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Figure 3. CPU times (s) for integration of one orbit of CBERS and SCD-like 
satellites versus order and degree 



plots shows up to 21 m difference in along-track direction for truncation on n=m=10, Of 
course the discrepancies decrease with increase of order and degree. The right side shows 
differences for truncation from n=m=60 to 240. For SCD orbit types (nearly equatorial 
circular) the conclusion is similar, that is, to millimeter level accuracy the n, m truncation 
should be somewhere between 120 and 240. 

 
A discrepancy with periodic (sinusoidal shape) trend is observed in CBERS orbit 

integration on the along-track component. However this fact hardly can be considered 
conclusive because the same shape does not manifest in the SCD orbit. Probably longer 
integration times should be carefully analyzed in terms of precise orbit prediction. For now it 
is considered out of scope of this work, and it is postponed to follow-up works. 

 
5. Final considerations 

This report shows the mathematical details of the implemented geopotential related 
computation. Considerable effort was put in optimizing the code so as to save computational 

-0.005

0.000

0.005

0.010

0 2000 4000 6000

TIME (S)

T
R

A
C

K
 E

R
R

O
R

 (
M

)

-0.006

-0.003

0

0.003

0.006

R
A

D
IA

L
 E

R
R

O
R

 (
M

)

60 120 240

-0.005

0.000

0.005

0.010

0.015
N

O
R

M
A

L
 E

R
R

O
R

 (
M

)

-6

-4

-2

0

2

4

6

8

R
A

D
IA

L
 E

R
R

O
R

 (
M

)

10 20 30 60

-8

-6

-4

-2

0

2

4

N
O

R
M

A
L

 E
R

R
O

R
 (

M
)

-25

-20

-15

-10

-5

0

5

0 2000 4000 6000

TIME (S)

T
R

A
C

K
 E

R
R

O
R

 (
M

)

Figure 4. Discrepancies in RNT components for one CBERS satellite orbit with different 
levels of order and degree truncation 



costs. Some extra CPU saving is possible if the user, knowing the intended application, pre-
stores some arrays. Also some memory saving is possible if the user stores the matrix of 
geopotential harmonic coefficients in vectorized arrays (single dimension). This is not 
implemented in the Fortran version as it impairs the understanding and cleanliness of code, 
but is as easily implemented by experienced users. Some care was also taken with respect to 
the mix between integer and double precision numbers, as well as arithmetic operation 
sequences to avoid premature over- under-flows. Some illustrative results showed the power 
and stability of the codes implemented. Sources codes as well as test codes are freely 
available in both Fortran-77 and ANSI-C programming languages (Kuga and Carrara, 2012). 
It should be remarked that the Fortran source code is the baseline, and the C-code is a 
transcription of Fortran into ANSI-C. 
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Figure 5. Discrepancies in RNT components for one SCD satellite orbit with different 
levels of order and degree truncation 
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