Figuras 3D de Mecânica Celeste Este programa
foi criado em linguagem POV (Persistence of Vision Raytracer) para
auxiliar na geração de figuras geométricas 3D, com a intenção de
ilustrar trabalhos acadêmicos.
A
versão atual permite desenhar esferas (ou segmentos esféricos)
transparentes, com ou sem textura dos continentes, vetores, arcos de
círculos e órbitas de satélites.
|
Para
usar o programa, é necessário baixar e instalar o POV, que é gratuito. A seguir, deve-se
baixar o arquivo
compactado contendo o programa
figuras.pov, e
descompactar o
arquivo em alguma
pasta. O POV deve agora ser executado, e na opção File/Open, deve-se
abrir o arquivo figuras.pov e figuras.txt. Este último é um arquivo de
dados que controla a geração das figuras no POV.
O arquivo figuras.txt apresenta um exemplo dos dados que geram a figura ao lado, e também um resumo de todos os comandos e seus significados. |
3D
Images for Celestial Mechanics
This
is a small script in Povray
to generate images of spheres, circles and vectors in 3D space, to
ilustrate academic papers. Directions are given by a text file
containing a sequence of two lines with coded numbers, like
1, 1.8, 0.3, 30, 50, 30, 0, 360, 0, 0, 0, The first line means the object to be drawn, and in the second line are the properties of such an object. Present
version can draw segment
or wedge spheres with or without transparency, with solid colors
or with the Earth texture, vectors in 3D space, circles, arcs, and
orbits.
|
Initially
download and install Povray from here
(it's free). Then, download this compressed file with the pov script
"figuras.pov", and unzip it in an empty folder. Now you can run Povray and from the
pov's menu File/Open, open the "figuras.pov" file. Also open
"figuras.txt", which contains the scene descriptors. This file already
has some previous stores scenes that you can use, besides
an explanation of all the drawing commands.
|
Scene descriptor commands
(figuras.txt)
Command format: n, n1, n2, n3, n4, ..., where n, is the command code with ending comma n1, n2, ... are the command descriptors. All descriptors must be in the right place, even if zeros, separated by comma and with ending comma Command list: 0 - Camera position and view direction 1 - Elipse or elipse arc to draw an orbit 2 - Draw axes of a rectangular coordinate system 3 - Sphere or spherical segment 4 - Draw a vector with rectangular coordinates 5 - Draw a circle, an arc or a parallel 6 - Draw a vector with spherical coordinates 9 - Stop drawing Command descriptors (with example between parenthesis) Camera n = 0, n1 = (20) // Right ascension of camera position (deg) n2 = (30) // Declination of camera position (deg) n3 = (10) // Radius of camera position n4 = (.2) // x component of looking point n5 = (.1) // y component of looking point n6 = (.2) // z component of looking point n7 = (20) // Camera field of view (angle in degress) Elipses and orbit n = 1, // Elipses and orbit command n1 = (1.6) // Semimajor axis in Earth radius units n2 = (0.2) // Eccentricity n3 = (30) // Inclination (deg) n4 = (40) // Right ascension of the ascending node (deg) n5 = (60) // Perigee argument (deg) n6 = (0) // Eccentric anomaly of the beggining orbit arc (deg) n7 = (-10) // Eccentric anomaly of the final orbit arc (gr) (deg) n8 = (1) // Beggining mark: 0-No mark | 1-Arrow | 2-Ball n9 = (1) // Ending mark: 0-No mark | 1-Arrow | 2-Ball n10 = (0) // Arc color: 0, 1, or 2 Coordinate system axes n = 2, // Rectangular coordinate system n = (1) // Ending mark: 0-No mark | 1-Arrow | 2-Ball n = (20) // First rotation angle (deg) n = (3) // First rotation axis (1-x, 2-y, 3-z) n = (40) // Second rotation angle (deg) n = (1) // Second rotation axis (1-x, 2-y, 3-z) n = (0) // Third rotation angle (deg) n = (3) // Third rotation axis (1-x, 2-y, 3-z) n = (1) // Axes lenght in units of 1.2 radius unit n = (0.5) // Origin position in x direction n = (0.2) // Origin position in y direction n = (-0.3) // Origin position in z direction Sphere n = 3, // Sphere, spherical segment, spherical wedge n = (0.) // Initial radius (radius units) n = (1.0) // Final radius n = (0) // Initial meridian (deg) n = (360) // Final meridian (deg) n = (30) // Initial parallel (graus) n = (90) // Final parallel (deg) n = (0) // Sphere material: 0-transparent | 1-Earth texture Vector in rectangular coordinates n = 4, // Vector in rectangular coordinates n = (0.3) // x coordinate of vector origin n = (-0.5) // y coordinate of vector origin n = (-.2) // z coordinate of vector origin n = (2) // Beggining mark: 0-No mark | 1-Arrow | 2-Ball n = (0.5) // x coordinate of vector n = (1) // y coordinate of vector n = (1) // z coordinate of vector n = 2; // Vector mark: 0-No mark | 1-Arrow | 2-Ball Circle arc n = 5, // Circle or circle arc n1 = (0) // Initial angle (deg) n2 = (-10) // Final angle (deg) n3 = (1) // Initial mark: 0-No mark | 1-Arrow | 2-Ball n4 = (1) // Final mark: 0-No mark | 1-Arrow | 2-Ball n5 = (20) // First rotation angle (deg) n6 = (3) // First rotation axis (1-x, 2-y, 3-z) n7 = (40) // Second rotation angle (deg) n8 = (1) // Second rotation axis (1-x, 2-y, 3-z) n9 = (0) // Third rotation angle (deg) n10 = (3) // Third rotation axis (1-x, 2-y, 3-z) n11 = (1) // Circle or arc radius n12 = (0.5) // Shift of the circle perpendicular to circle plane n13 = (1) // Material color: 0, 1 or 2 Vector radius n = 6, // Vector in spherical coordinates n = (1) // Vector mark: 0-No mark | 1-Arrow | 2-Ball n = (20) // First rotation angle (deg) n = (3) // First rotation axis (1-x, 2-y, 3-z) n = (40) // Second rotation angle (deg) n = (1) // Second rotation axis (1-x, 2-y, 3-z) n = (0) // Third rotation angle (deg) n = (3) // Third rotation axis (1-x, 2-y, 3-z) n = (1.) // Vector length in radius units n = (0.5) // x coordinate of vector origin n = (0.2) // y coordinate of vector origin n = (-0.3) // z coordinate of vector origin End command n = 9, // Stop reading commands and draw figure |
� Copyright: Carrara, V. 2023
Contact: