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A GAS BEARING PLATFORM ATTITUDE CONTROL FOR 
ASSESSMENT OF AOCS SYSTEMS 

V. Carrara*, A. M. Oliveira† and H. K. Kuga‡ 

This paper presents a solution for the development, validation and testing of 

attitude control system for satellites with hardware-in-the-loop dynamics and 

control. The system is based on a gas-bearing platform in which several sensors 

and actuators, similar to those usually employed in satellites (engineering 

models) were fixed. Magnetometers and gyroscopes are easily incorporated to 

the platform, but sun sensors and star sensors are more difficult. The solar 

sensors are replaced by a tri-axes accelerometer, while the star sensor relies on 

direct night sky measurements. Although hot gas thrusters cannot be used, both 

magnetic torque coils and reaction wheels are feasible to be incorporated to the 

arrangement. The gas-bearing balancing process is critical for real satellite 

dynamic simulation and therefore the solution is addressed in this work, by 

means of a non-linear filtering of the sensor readings. The filtering process also 

obtains the platform mass properties. In order to increase the filter accuracy the 

gyroscopes were calibrated; the calibration results are also presented here. 

Finally, an attitude controller was implemented in the platform and the control 

performance was analyzed and shown together with the conclusions.  

INTRODUCTION 

During recent years the development of Attitude and Orbit Control Systems (AOCS) for small 

satellites has been spread from large industries and space agencies to universities and small 

companies. This change was mainly caused by cost reduction due to miniaturization and large-

scale production of electronic components. Software design and qualification tests nevertheless 

still remain an expensive part of AOCS development costs. However, AOCS qualification tests 

are taking advantage of the benefits of Gas-Bearing Platforms (GBP), which have now affordable 

prices.  

GBP have been widely used over the past 50 years to simulate the free-of-torque frictionless 

space conditions and environment. In the United States, the earliest record of a 3-Degrees-Of-

Freedom (DOF) bearing for attitude simulation of a satellite was in 1959 at U.S. Army Ballistic 

Missile Agency
1
. That GBP was later incorporated to the NASA’s Marshall Space Flight Center. 

In mid-1990, the use of this technology for simulating a free of torque environment was already 

quite common at many universities scattered across North America, Europe and Japan. The basic 
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experiments conducted by universities are linked to the areas of attitude control
2,3
, parameter 

estimation
4,5,6

 and validation of space subsystems, including actuators and sensors in general. 

Today the main purpose of such platforms is to study methods of three-axis satellite attitude 

stabilization and control. Several industries, agencies and universities are investing in this 

technology envisaging design enhancement, reliability improvement, cost reduction and 

shortening of the development time. On the other hand the balancing process of the platform is 

still a major problem, since any unbalancing mass can easily cause a torque larger than the ones 

found in space environment. So, balancing should assure that the platform center of mass remains 

close to the bearing center by amounts estimated in less than few tenths of microns.  

To achieve the goal of developing a three-axis AOCS to meet the upcoming Brazilian 

missions, a dumbbell type GBP (300 pounds capacity) was equipped with several sensors 

(gyroscopes, star sensor, magnetometer and GPS receiver) and actuators (3 reaction wheels and 3 

magnetic torque coils), with characteristics similar to the equipment that will be employed in 

those missions. All equipment have been integrated to a PCDH (Power Conditioning and Data 

Handling) computer capable of managing the power and data transmitted to and coming from 

each one. Additionally the GBP was placed in a room with retractile ceiling in order to allow star 

sensor readings at night.  

The validation of the simulation environment, the synthesis of the control system, and the 

controller performance depend on the accurate knowledge of mass distribution of the platform, 

more precisely the moments of inertia and center of mass. A non-linear filter based on data 

gathered from the sensors estimates those properties with the desired accuracy, and will be 

presented in this work. Finally, a control algorithm has been proposed to stabilize the platform in 

the three axes using the reaction wheels with orthogonal arrangement. The attitude determination 

procedure is based on measurements of three gyroscopes, also oriented orthogonal to each other 

and a star sensor. The characteristic curves of the sensors and actuators used in the simulation 

were based on the ICD (Interface Control Document) of the equipment and characterization 

experiments. Several experiments can be done in the GBP, such as AOCS operation modes 

validation and testing, sensors and actuators identification and characterization, and control 

algorithm validation in a realistic hardware-in-the-loop network. This paper presents the 

balancing process, the gyros characterization procedures and results, the mass properties 

estimation process and some results coming from a basic GBP attitude control. 

THE GAS-BEARING PLATFORM 

The platform consists of a dumbbell shape spherical gas bearing, shown in Figure (1). It has 

360
o
 revolution in two axes and the motion is limited to 30

o
 around the symmetric axis. The 

platform is equipped with 3 reaction wheels, 3 magnetic torque coils, a star tracker, a gyroscope 

triad, a 3-axis magnetometer, a GPS receiver, a programmable Power Condition and Data 

Handling unit (PCDH) for attitude control logic, a 28 V Li-Ion battery and a wireless 

communication data link through RS232 serial interface. The platform is now operating at the 

Simulation Laboratory (LABSIM) of INPE (National Institute for Space Research) in Brazil. All 

the sensors, actuators, battery and control computer are engineering models. 

The maximum momentum storage for the reaction wheel is 2.65 Nms at 6100 rpm, with 

maximum torque of 0.025 Nm. The reaction wheel operates in both torque control and speed 

control operating modes, including torque compensation for high motor temperature. 

The star tracker has a field of view of 14
o
 squared, with sampling rate of 4 Hz when in 

tracking mode. Lost in space acquisition takes less than 5 seconds. The accuracy is 18 arc-sec in 
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the sensor plane and 122 arc-sec around the sensor axis. The predecessors of this sensor were 

successfully employed on TUBSAT-A and MAROC-TUBSAT micro-satellites from Technical 

University of Berlin. It provides reliable readings in clear night skies, even in presence of 

moonlight or city lights. Although atmospheric refraction is not compensated for in 

measurements, it is considered that the sensor readings are still accurate, since the sensor will 

operate normally close to the zenithal direction. 

The magnetic torques can generate up to ±10 Am2
 of magnetic dipole in its axis direction. The 

magnetometer uses magnetic resistive element sensors to achieve 4 mGauss accuracy at 6 kHz 

maximum sampling rate.  

The gyroscope triad is composed of three Northrop Grumman µFORS-6U fiber optic rate 

sensors. The characterization and calibration procedures were performed in a precise servo-

controlled turntable, and will be described in the next section. 

Figure 1.  The spherical gas bearing platform. 

Gyroscope triad characterization 

It is desirable to find the following characterization coefficients for the gyroscope triad:  

= +ω Sω bɶ  (1) 

where ω is the vector with the reference values for the angular velocity, ωɶ  is the vector of 
measurements obtained by the sensor triad, b is the vector of offsets and S takes into account both 

the misalignment between the gyros and the output axis, and the gyro scale factors. 

Based on the linear model, the measure vector is: 

y = H x  (2) 

where y is the gyro measurements. A set of 6 data sets were generated in which each triad axis 

was oriented in the vertical direction both up and down. For each data set, the turntable was 

commanded to turn 360
o
 around the vertical direction with a given angular velocity plus 10 

seconds. The reference angular rates were ±0.75o/s, ±0.5o/s ±0.25o/s and null angular velocity 
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(with 1450 seconds duration), as can be seen in the example of Figure (2) for the first sequence in 

the gyro x-axis. All other data sets follow similar profiles. For each reference angular rate a 

unique mean value of the measured data was then calculated and stored in y vector in the 

sequence: 

(1) (6) (1) (6) (1) (6)
T

x x y y z zω ω ω ω ω ω=   y = ω ɶ ɶ ɶ ɶ ɶ ɶɶ ⋯ ⋯ ⋯  (3) 

where ( )i jωɶ , with i = x, y, z is the vector of measurements for each one of the 6 sequences.  

Hence, there are six data sequences for each axis. The vector of parameters to be estimated is:  

T

xx xy xz x yx yy yz y zx zy zz zS S S b S S S b S S S b =  x  (4) 

where Sij and bi are the components of matrix S and bias vector b, respectively.  

The H matrix is therefore defined as: 

( )

( )

( )
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ω
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where H(ω) is the sub-matrix 
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H  (6) 

and ωref is the reference angular velocity imposed by the precision turntable.  

By reducing the cost-index L based on the square of residues: 

( ) ( )T
= − −L Wy Hx y Hx  (7) 

the best vector x is estimated, which minimizes the cost-index and therefore are the best values 

for the linear model of the calibrated gyroscope triad. The weight-matrix W is the gyro’s 

covariance matrix, defined by: 

2

2

1/ (1)

1 / (6)

x

z

σ

σ

 
 =  
  

0

W

0

⋯

⋮ ⋱ ⋮

⋯

 (8) 

where σi(j) is the data standard deviation over i axis and sequence j. The vector x̂  can be obtained 

by
7
: 
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ˆ T=x PH Wy  (9) 

where the state covariance matrix P can be found by solving: 

( ) 1
T

−
=P H WH  (10) 
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Figure 2.  Gyroscope triad measurement from sequence 1 (x axis is vertical). 

Crude acquired data needs to be processed before running into the algorithm. As can be seen 

in Figure (3) with the angular velocity of the turntable adjusted to 0.5º/s and the gyro x-axis in the 

up direction, the Earth’s rotation rate can be detected by the gyros. In fact, both y and z axes show 

a slight oscillation caused by the Earth’s rate, which needs to be subtracted from the collected 

data by: 

0 0sin cos cos( ) cos sin( )
T

cor msr E ref reft tΩ ψ ψ ω θ ψ ω θ = − + + ω ω  (11) 

where ψ is the local latitude of the experiment, θ0 is the initial angular position of the turntable 

and ΩE is the Earth’s angular velocity. ωωωωcor and ωωωωmsr stand respectively for the corrected and crude 

measurements. A simple mean value of ωωωωcor on m measurements, for each of the reference angular 

velocities of the turntable composes the ( )jωɶ  vector, with j = 1, …, 6.  Obviously, also for each 

one of the sequences, the element position changes in the vector. The axis in vertical direction is 

always subtracted by the sin(ψ) component. Finally, after getting 7 calibration parameter sets, one 

for each reference angular velocity they are composed in a single one by weighing with its 

covariance term. 

The misalignment matrix S and the bias vector b after least squares processing were  

ωx 
ωy 
ωz 
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0.999998 0.001119 0.001261

0.000909 0.999999 0.000079

0.002063 0.001298 0.999996

− 
 = − 
  

S  (12) 

[ ]0.0003152 0.0007884 0.0001749
T

= −b º/s (13) 

and it is easy to see that the maximum estimated misalignment was around 0.1 degrees. The 

standard deviation matrix of the misalignment S and the standard deviation vector for the bias 

resulted, respectively:  

0.021817 0.022299 0.022371

0.019699 0.019518 0.019678

0.020059 0.020120 0.020037

 
 =  
  

Sσ  (14) 

[ ]0.0052344 0.0046380 0.0047413
T

=
b

σ º/s (15) 

For data validation the slowest rate of 0.25º/s was chosen in order to perform the 

determination of the angular position after a full turn of 360 degrees, during 1440 seconds, 

around the x-axis. Earth’s angular velocity was removed from the data prior this analysis. Without 

the correction in the angular measurements of Equation (1), the integrated angular rate resulted 

[ ]360.4499 1.7441 0.8332
T

∆θ = −  degrees, while the error was clearly smaller when the 

correction was done, resulting from the integrated rate of [ ]360.1197 0.9061 0.5281
T

∆θ = −  

degrees.  
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Figure 3.  Small sinusoidal pattern (ωωωωy and ωωωωz) of the gyroscope triad measurement due Earth’s 

angular velocity. 
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THEORETICAL BASIS 

This section starts with a brief description of the attitude kinematics and dynamics of a rigid 

body, and is supplemented with a description of the estimation algorithm and the characterization 

experiment for the gyroscope triad. 

Attitude kinematics and dynamics 

Attitude kinematics of a generic body can be described in different modes. Usually, Euler 

angles or quaternions are used. The use of quaternions is justified by computational facility, since 

trigonometric functions are avoided, circumventing computational problems like divisions by 

zero. On the other hand, it presents some difficulty for attitude estimation due to the lack of 

independence of the four quaternions, which are related by the constraint that the quaternion has 

unit magnitude. This constraint results in a singularity of the quaternion covariance matrix
8
. 

Within this perspective, the Euler angles are usually adopted for attitude propagation in the 

filtering prediction phase. The body attitude with respect to the inertial reference frame can be 

represented by three rotations that align these two distinct reference systems. In the LVLH (Local 

Vertical, Local Horizontal) system (x towards East, y towards North, z to zenith), the motion 

around the x-axis is assumed as pitch (θ), around the y-axis is roll (φ) and around the z-axis is 

heading (ψ). For the time interval of the experiments seen here the Earth’s rotation rate can be 

neglected and so the LVLH coordinate system can be considered as a inertial system. Hence, the 

rotation sequence used in this work for Euler angles is 3-2-1 represented by the following 

transformation of matrix
9,10

: 

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

br

ϕ ψ ϕ ψ ϕ
ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ
ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ

− 
 = − + 
 + − 

C  (16) 

The set of kinematics equations are therefore given by: 

1 sin tan cos tan

0 cos sin

0 sin / cos cos / cos

x

y

z

ωϕ ϕ θ ϕ θ
ωθ ϕ ϕ
ωψ ϕ θ ϕ θ

    
    = −     
         

ɺ

ɺ

ɺ

 (17) 

where ωx, ωy and ωz are the angular velocity measured at the body reference system. The angular 

momentum law with respect to an inertial frame defines the attitude dynamics of a rigid body: 

h = Tɺ  (18) 

where h is the angular momentum vector defined as: 

h = I ω  (19) 

in which I is the body inertia matrix and ω is the angular velocity vector. T is the sum of external 

torques, divided into environmental and control torques, defined by: 

env con= +T T T  (20) 

When expressed in a frame attached to the body, the attitude dynamics of a rigid body is 

represented by: 
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+ × =I ω ω I ω Tɺ  (21) 

Thus, the rigid body dynamics is a nonlinear function of the angular velocity vector and the 

external torque: 

1
( )

−= − ×ω I T ω I ωɺ  (22) 

The environmental torque TCG caused by the displacement of the center of gravity of the 

platform with respect to the bearing center is obtained by: 

CG CG= ×T R P  (23) 

where RCG is the center of gravity position vector of the bearing with respect to the bearing 

rotation center and P is the weight vector. It can be noted that the vector RCG is measured in body 

system reference while the vector P is known in topocentric reference system: 

[ ]0 0
T

m g= −P  (24) 

where m is the total mass of the platform and g is the local gravity acceleration. Since the torque 

shall be expressed in the body reference system, Equation (23) must be changed to: 

( )CG CG br= ×T R C P  (25) 

where Cbr is the rotation matrix defined in Equation (16). 

Extended Kalman filtering 

Kalman filter, in its standard form, is an optimal minimum variance estimator that 

incorporates uncertainties both in the dynamic and observation models. However, Kalman filter 

can handle only linear systems, while its non-linear version, the Extended Kalman Filter (EKF), 

applies to any continuous dynamics. Unlike its linear version, the EKF is not optimal due to 

truncation of higher order terms. 

Extended Kalman Filter is a state estimation algorithm that, with some adjustments, can also 

be used for parameter estimation. It is the generalization of the Kalman filter for nonlinear 

dynamic systems. Most references on the subject divides the algorithm into two phases: 

prediction and correction
11,12

. Here a generic system with input vector u, state vector x and 

measurement vector y, is described by: 

( , , ) kt +x = f x u wɺ  (26) 

1 1 1 1( )k k k k+ + + ++y = h x v  (27) 

where f and hk are nonlinear functions linking the state vector x to the dynamic and the 

observation models, respectively. The process and observation noises are represented by random 

variables w = N(0, Q) and vk = N(0, R), Gaussian distributions with zero mean and covariance Q 

and R, in this sequence. It can be noted that the system prediction is continuous and the 

observation is discrete. For x ∈ R, the covariance matrix P has dimension n × n and is defined as: 

cov[ ] [( [ ])( [ ]) ] [ ] [ ] [ ]
T T T

E E E E E E= − − = −P = x x x x x xx x x  (28) 
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where the function E[x] is the mathematical expectation. 

The first phase of the EKF is based entirely on the system dynamics. Given the initial state 

vector x0 at time t0, and knowing the input u applied over time, the system states can be 

propagated and therefore predicted in any time ti, with ti > t0. This propagation is therefore done 

via numerical integration of the Equation (22) considering no uncertainty. 

For the covariance prediction, the continuous Ricatti equation, that incorporates the 

uncertainty of each state equation of the model to the covariance matrix, is used: 

T T+ +P = F P P F G QGɺ  (29) 

where G is the association matrix between the process noise and the covariance. F is the Jacobian 

of f, defined by: 

1 1

1

1

( )

n

n n

n

f f

x x

D

f f

x x

∂ ∂ 
 ∂ ∂
 

= =  
 ∂ ∂ 
 ∂ ∂ 

F f x

⋯

⋮ ⋱ ⋮

⋯

 (30) 

The correction process is done by comparing the obtained measurement from the predicted 

state xk+1 with the actual value of yk+1 obtained by the sensor at time t1, with t1 > t0. The balance 

(weighing) between the predicted values and the values obtained by the sensors is given by the 

Kalman gain Kk+1. Thus, the equations that summarize the correction process are: 

( ) 1

1 1 1 1 1 1 1

T T
k k k k k k k

−

+ + + + + + ++K = P H H P H R  (31) 

( )1 11
ˆ
k kk k+ ++= −P PI K H  (32) 

1 1 1( )k k k+ + += −∆ y h x  (33) 

1 1 1 1
ˆ
k k k k+ + + += +x x K ∆  (34) 

where P  is the predicted covariance matrix and P̂  is the corrected covariance matrix. 

The vector xk+1 is the best estimate for the state at the discrete time k + 1. The residue ∆∆∆∆k+1 is 
defined as the difference between the sensor measurement and the value of the nonlinear function 

h applied to xk+1. The matrix H is the Jacobian of h, applied at the point xk+1, and defined by: 

1 1

1

1 1

( )

n

n n

n k

h h

x x

D

h h

x x
+

∂ ∂ 
 ∂ ∂
 

= =  
 ∂ ∂ 
 ∂ ∂ 

H h x

⋯

⋮ ⋱ ⋮

⋯

 (35) 
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With the already computed 1
ˆ
k+x  and 1

ˆ
k+P  the algorithm is fed back, restarting the prediction 

and correction. 

MASS PROPERTIES ESTIMATION
 

The mass properties, like satellite inertia and center of mass position, are measured on ground 

by special machines, named MOI measurement instruments. These machines require that the 

body have a rigid flange in order to be attached to the measurement instrument. However, GBP 

normally doesnot have a flange interface. Moreover, the instrument accuracy of CG position is far 

from desirable, for about 3 orders of magnitude. In fact it is easy to demonstrate that a 

misalignment of the CG from the bearing center larger than few micrometers can generate an 

attitude disturbance torque greater than those present in space. There are several methods and 

algorithms to measure and to estimate the mass properties of an unconstrained body
13
. In this 

section a procedure based on parameter estimation by an extended Kalman filter will be 

presented. This procedure was used to estimate the mass properties of the GBP of LABSIM 

shown previously, and the results will be detailed here. 

The GBP was firstly manually balanced, so the remaining unbalance was minimized. The 

GBP was then released in a free motion, with a random angular velocity less than 0.5
o
/s, and data 

was acquired at 2 Hz sampling frequency during 250 seconds. The measured data is composed by 

the gyros measurements only. Angular position was obtained by direct integration of the 

kinematics equations in Euler angles, as described by Equation (17), with adopted null angles at 

initial time. However, prior starting to estimate mass parameters the GBP was left to drift freely 

during few seconds. 

The state to be estimated by the EKF was the integrated angular velocity, the GBP angular 

rate, the inertia moments and products, and the CG position: 

T

x y z xx yy zz xy xz yz CGx CGy CGzI I I I I I R R Rϕ θ ψ ω ω ω =  x  (36) 

The measurement vector y is of course given by the integrated gyro measurements from the 

kinematics equations and the gyro measurements themselves: 

T

x y zϕ θ ψ ω ω ω =  y  (37) 

Since the observation vector is composed by the state vector Euler angles and angular 

velocity, the H matrix is formed by a 6
th
 order identity followed by a 6×9 null matrix. The 

dynamic Jacobian F, however, is far from simple. It was computed by the symbolic algebraic 

manipulator of Matlab, and the expressions resulted too long to be presented here. 

The initial conditions for the EKF estimator of the state vector, state covariance matrix P, 

process covariance matrix Q and observation covariance matrix R were  
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[ ] [ ]

[ ]

[ ]
( )

2

7 7 7 6 6

 rad0.5955 0.0650 7.4421

 rad/s0.0099 0.1655 0.2260

3 0 0

 kg m0 12 0

0 0 12

 m0 0 0

diag 1 1 1 1 1 1 1 4 1 1 1 0.0001 0.0001 0.0001 0.0001

diag 7.61510 7.61510 7.61510 3.68510 3.68510

T T

T T

x y z

T

CG

ϕ θ ψ

ω ω ω

− − − − −

= − −

=  − − 

 
 =  
  

=

=

=

I

R

P

R ( )
( )

6

9 9 9 14 14 14

3.68510

diag 0 0 0 10 10 10 0 0 0 0 0 0 10 10 10

−

− − − − − −=Q

 

(38) 

The initial moments of inertia were obtained via CAD model. It can be noted that the 

uncertainty to the model was only added to the dynamic model, Equation (22). Kinematics model 

was considered perfect in this method.  Initial values for P, Q and R were based on gyro noise 

statistics and trial adjustment for filter convergence, or refining process, also called filter tuning. 

Figures (4) and (5) shows the data collected from angular position and angular velocity of the 

GBP. It can be seen that the platform completed 11 full turns around the z-axis (ψ) in 250 
seconds. 
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Figure 4.  Euler angles of the GBP with sample time of 2 Hz. 

Figures (6) and (7) show the estimated mass properties of the GBP as function of the time. 

The median curve is the mean value of each parameter. Above and below curves show the 

parameter added and subtracted with one standard deviation at the corresponding time. Although 

the mass properties given by the CAD program showed reasonable agreement with the final 

values, the filter obtained not only the inertia moments but also non-null inertia products (Ixx, Ixy 

and Ixz). It’s remarkable that the CG position, whose filter estimate is presented in Figure (7), 

resulted less than 10 micrometers after the manual balancing. 
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Figure 5.  Data collected for angular velocity with sample time of 2 Hz. 
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Figure 6. Estimated moments of inertia. 

The residues from the measurements of angular position and angular velocity during the 

estimation process are shown on Figures (8), Euler angles, and (9), angular velocities. It is well 

established that estimation algorithm is working properly when the residues are close to zero. The 

angular position error is less than 0.6
o
 after filter convergence, while the angular rate remained 

below 0.23
o
/s. 
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Figure 7.  Estimated position of the center of gravity in three dimensions. 

The final values for the GBP inertia and CG position coming from filter estimation resulted in 
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while the standard deviation for these parameters were 
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Figure 8.  Euler angles residues during the estimation process. 
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Figure 9.  Angular velocity residues during the estimation process. 

The values for moments of inertia are slightly larger than the CAD model. This fact was 

already expected since cables and some pre-balancing masses were used to make a primary 

balancing in the GBP. Although the CAD computed inertia was a full matrix, the filter was 

initialized with null values for the products of inertia, because they are small when compared with 

the moments of inertia. Of course the CAD layout was done taking into account not only 

ϕ 
θ 
ψ 

ωx 

ωy 

ωz 
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balancing of the GBP but also the alignment between the platform reference axes and the axes of 

the principal moment of inertia. 

CONTROL ALGORITHM USING REACTION WHEELS 

Since the GBP shall be used as a development test bed for AOCS subsystems, an attitude 

controller was implemented and tested. The control employs the reaction wheels as unique 

actuators, and the gyros and star sensor as attitude sensors. A PD (Proportional-Derivative) 

controller was chosen and integrated to the PCDH. The integrative portion of the controller is not 

necessary because the system already has a pole at the origin and thus the error is zero for a step 

input. The control diagram can be seen in Figure (10). J stands for the moment of inertia at a 

given axis, and b represents a viscous friction coefficient between the GBP and air, causing a 

torque proportional to the angular velocity. The constants kp and kd are the proportional and 

derivative gains. As for disturbance torque it was considered in the model just the misalignment 

between the bearing center and the platform center of gravity. Except for the viscous friction 

coefficient, all other coefficients were estimated or calculated. 

 

Figure 10.  Simple control algorithm for the GBP. 

Two simplifying assumptions were made in order to approximate the nonlinear dynamics of 

rotation to a linear and uncoupled system. The first one was to consider negligible the products of 

inertia, and so the inertia matrix became diagonal. The second was to admit that the body rotation 

rate is very small. These two assumptions together greatly reduce the non-linear portion of the 

system and makes uncoupling between body axes possible. The controller design, then, was done 

separately for each axis. The gains for the 3-axes controller were computed so as to give a control 

response with a 10% overshoot and settling time of 100 seconds. The proportional gains are, for 

x, y and z axes: 0.01573, 0.05751 and 0.05830 Nm/rad, while the derivative gains are 0.27388, 

1.00404, and 1.01772 Nms/rad. Moreover, the adopted viscous coefficient for all axes is 0.001 

Nms/rad. 

The GBP was commanded to perform a 180 degrees rotation about z-axis. Figures (11), (12) 

and (13) show the response of the platform to the controller action. The attitude in Euler angles is 

presented in Figure (11), while Figures (12) and (13) present the angular velocity (gyro 

measurements) and commanded reaction wheel torques, respectively. Unfortunately, due to bad 

weather conditions during several nights at the time of this writing, the star sensor could not be 

used in this experiment. The attitude controller had to rely only on the gyro measurements, and 

this explains the reason why the initial attitude is zero. It is remarkable that the torque saturates 

quickly, as soon as the control begins to maneuver the GBP, as can be seen in Figure (13). 
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Probably due to the saturation of the reaction wheel torque the overshoot was slightly reduced 

when compared to the design values. In fact, the measured overshoot in z-axis was only 7.5%. 

The measured settling time of 101.6 s, on the other hand, was close to the design one. However it 

was expected a bigger time, due to the torque saturation.   
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Figure 11.  GBP attitude of a 180
o
 z-axis maneuver. 
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Figure 12.  GBP angular velocity during maneuver. 
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Figure 13.  Applied reaction wheel torque. Saturation limits the torque to 0.025 Nm. 

CONCLUSION 

This work presented the efforts being carried out in Brazil to achieve an in house technology 

for a 3-axis stabilized and digitally controlled satellite attitude. These efforts were directed to a 

Gas Bearing Platform equipped with attitude sensors and actuators, which allow reasonable 

simulation of the space environment. The sensors are composed of a gyroscope triad, a star 

sensor, a 3-axis magnetometer and a GPS receiver. As well 3 reaction wheels and a set of 3 

magnetic torquers generate the control action.  

In order to calibrate the gyros, a linear model was settled and the calibration parameters were 

obtained by least squares fitting from several data collected by an accurate servo-controlled 3-

axis turntable. The estimated gyro parameters were the scale factor and alignment matrix, and 

bias vector. They were obtained with many different calibration sequences, with six distinct 

configurations in order to excite all axes.  

The scale factors and bias obtained here will be obviously slightly different if the experiment 

was repeated with another calibration sequence. This can be explained by the noise model of the 

sensors, which are a composition of quantization noise, random walk and bias instability, besides 

the already modeled ones. They could be reached by processing the Allan Variance for the 

individual gyros, but it is outside the scope of this paper.  

As expected, after calibration the gyroscope triad still presents a drift of few degrees per hour, 

which is the best nonmilitary precision that can be achieved in the industry for inertial 

measurement units. Gyro sensors with drift in the order of degrees per day or better are usually 

employed in space applications.  

Although the calibration process was done with the gyros turning only around the vertical 

axis, the model parameters obtained by calibration can always improve the angular position 

measurement at the end of a short time integration process. So a periodic attitude determination 

with the star sensor or magnetometer plus sun sensors (or accelerometer, if a GBP is being 

Tx 
Ty 
Tz 
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considered) shall be necessary. The calibrated gyroscope triad was then used in experiments 

involving attitude determination, estimation of mass properties (inertia and CG position), and 

attitude control. 

An extended Kalman filter was employed to estimate the GBP inertia and CG. The inertia 

matrix had a good agreement with the CAD model, which provided an initial guess for inertia in 

the filtering process. The estimated offset of the CG resulted in few micrometers, as expected 

after a manual but quite precise balancing of the GBP. 

Together with pointing and control requirements, the estimated GBP moments of inertia were 

used to calculate the gains of a proportional-derivative attitude controller. The analysis of the 

GBP response under the effect of the designed controller gains contributed to validate the 

estimated mass properties. 

The PD attitude control was successfully applied to an onboard algorithm for a 3-axis attitude 

control of the GBP. The controller's response was satisfactory and the small differences between 

the control design and control response can be explained by model simplification and the non-

linear platform dynamics. Despite being a very simple experiment, the platform, allied to the 

sensors and actuators, proved to be a reliable and truly reproduces the space environment 

allowing simulating not only all the attitude control system but also the real attitude dynamics. It 

can be used to test complex control algorithms with real sensors and actuators, as well as to 

validate and to qualify satellite attitude control systems. This platform can also be used to test 

algorithms for reaction wheel de-saturation, a fairly common problem in 3-axis stabilized 

satellites.  

Finally, it is worth to mention that this work is the first initiative of a 3-axis satellite attitude 

controller performed in Brazil, and surely shall be an invaluable test bed for attitude control 

development to help future Brazilian space missions. 
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