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Abstract: This paper presents the attitude estimation using Kalman filter, the PID control strategy and the 
momentum dumping technique using magnetorquers for the Brazilian satellite CONASAT. Attitude will be 
represented in quaternions, so the Kalman filter will be implemented using the reduced order covariance, to 
avoid the singularity of the covariance matrix. The reaction wheel desaturation will be made using the 
Conventional Cross Product Law (CCPL) and a bang-bang strategy, for comparison by means of the 
magnetorquers. The results show that the Kalman filter estimates correctly the gyroscope bias, allowing the PID 
controller to keep the attitude error below 5°, even during the satellite passage through the Earth’s shadow. The 
wheel’s speed decreased to the reference value (zero) in about 4500s, using either CCPL or the bang-bang 
strategy. 

1 INTRODUCTION 

Earth-pointed satellites must maintain a fixed attitude even in the presence of disturbances. 
In many applications, a high precision pointing is achieved using reaction wheels as actuators, 
which are used as momentum storage for the spacecraft, but are limited to the compensation 
of internal and periodical external torques only [1]. 

Secular torques, such as aerodynamic drag and solar radiation pressure, tend to saturate the 
reaction wheels, and an external torque is necessary to drive the wheel’s speed back to 
operational levels. Therefore, an adequate control law is required to minimize the influence of 
disturbance torques, allowing the nominal operation of the wheels. 

The Brazilian CONASAT [2] satellite is under design at the National Institute of Space 
Research (INPE), and consists of 8U CubeSat configuration, illustrated in Figure 1. All 
subsystems are housed in a 2U configuration, with another 2U used for cold redundancy. The 
remaining 4U are empty but they provide extra power generation with their solar panels [3]. 
Each CONASAT uses directional antennas for payload that requires nadir pointing within 5° 
accuracy. The satellite shall be equipped with MEMS gyroscopes, magnetic sensors, sun 
sensors, reaction wheels and magnetorquers. 

  

Figure 1: CONASAT configuration 



2 EQUATIONS OF MOTION AND ATTITUDE CONTROL STRATEGY 

In this work, the attitude is represented by quaternion, because it does not have limitations 
due to singularities and trigonometric functions, requiring less computational effort. The 
downside is that it does not have a direct physical interpretation, so usually the calculations 
are done using quaternions and then transformed to Euler angles. The quaternion can be 
calculated as [4][5]: 

  ( )ηεq = , (1) 

where ε is the vector part, η the scalar, and are defined as functions of Euler angle (θ) and axis 
(a): 
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The kinematic differential equation of the satellite can be described as: 
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is the matrix representation of the 4th order vector product of the angular velocities, and ×
ω  is 

the 3th order matrix of the angular velocity vector ωωωω cross product, such that × = ×ω v ω v   

The satellite dynamic equation, considering a set of three reaction wheels and 
magnetorquers aligned with the satellite’s principal inertia axis, is given by: 

 rextr TTωhIωωI −+×+= )(& , (5) 

where I is the satellite inertia matrix, ω is the angular velocity, hr is the reaction wheel’s 
angular momentum, Tr is the net reaction wheel torque and Text is the external torques, 
including disturbance torques and magnetorquer control torque. 

Attitude determination will be performed using a TRIAD algorithm based on 
measurements of a 3-axis magnetometer and coarse sun sensors. The TRIAD algorithm 
computes the attitude of a reference system constructed by the cross product of two non 
aligned vectors, assuming that one of the axis is aligned with one of the input vectors. The 
satellite attitude is then computed by applying the TRIAD on two vector pairs: the sensor 
readings and a onboard computed mathematical model of the Earth’s magnetic field and the 
Sun direction in an inertial reference frame.  

The adopted attitude control strategy, considering a set of three reaction wheels, was a PID 
controller [3], computed by: 
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where kp, ki e kd are, respectively, the proportional, integral and derivative gains, adjusted to 
0.008 Nm/rd, 0.000001 Nm/rd and 0.08 Nm/rd, respectively. ∆t is the time step, adopted as 1 
s and θ is the attitude error with respect to the orbital frame (whose axes are the local vertical, 
close to the satellite velocity vector and orthogonal to the orbit plane), in small Euler angles. 

3 MOMENTUM DUMPING 

The employed reaction wheel desaturation strategy was the Conventional Cross Product 
Law (CCPL), which can be calculated by [7]: 

 B∆hM ×= g , (7) 

where g is the control gain, ∆h is the reaction wheel angular momentum and B is the Earth’s 
magnetic field vector. This provides a continuous torque magnitude which can be achieved by 
means of a PWM (Pulse Width Modulation) switching of the magnetorquers. However, the 
PWM causes stress on the magnetorque hardware and compromises the magnetic cleanliness 
of the satellite. Therefore, to avoid the PWM strategy a discrete bang-bang (on-off) control 
was also tested.  

The bang-bang control law can be adapted from Equation 7: 
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where C is the maximum dipole strength of the magnetorquers. 

In order to improve the momentum dumping strategy, a dead zone was also implemented: 

 Bh∆ ˆˆ ×=Z  (9) 

It was considered that the magnetic torque of the satellite is much higher than the torques 
due to the periodic disturbances, so only the secular torques were taken into account. 

4 ATTITUDE AND BIAS ESTIMATION 

The conventional Kalman Filter for linear systems has two steps: the prediction and 
update. The prediction step is calculated using the following discrete equations [8]:  

 11, ˆ −−= kkkk xΦx , (10) 
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where 1ˆ −kx  and 1
ˆ

−kP  are the last updated states and covariance, respectively, 1, −kkΦ  is the state 

transition matrix and kΓ  is the additive dynamic noise matrix. 

For the update step, the equations are: 
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where Kk is the Kalman Gain, Hk is the measurement matrix, I, an identity matrix yk the 
measures and Rk the covariance matrix. 

For the attitude represented by quaternions (q) and gyroscope bias (b) estimations, it is 
common to use the following state equations, composed by seven elements: 
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where w represents the model uncertainties, modelled by a white noise with covariance Q and 
Ω is defined as in Equation 4. 

Considering the angular velocity vector constant between two consecutive measures, the 
quaternion transition matrix can then be calculated as [9]: 
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which is easier to implement because it avoids numerical integration of the state. 

Since the quaternion has unity module, it causes a singularity in the covariance matrix, 
which is a known disadvantage of using quaternions for attitude estimation:. Due to this 
singularity, the Kalman filter has to be adapted. In this work, the solution adopted was the 
reduced order covariance matrix [9]. 

4.1 REDUCED ORDER COVARIANCE 

In order to reduce the order of the quaternion covariance matrix (7x7), the following 
matrix transformation shall be applied: 

 ( ) ( )qSPqSP Tr =  and ( ) ( )qSQqSQ Tr = , (17) 

where rP  and rQ  are the reduced order covariance matrices (6x6) and S is calculated as: 
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which is a function of the quaternion elements q = (ε1  ε2  ε3  η)T. 



The reduced covariance matrix is then propagated using the discrete Riccati equation, 
where the transition matrix also must have its order reduced [10]:  
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For the covariance matrix update phase, the equations were modified as follows [10]: 
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To update the states, the Kalman gain also must return to full order: 

 ( ) kkk KqSK
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Then, the states are updated using Equation 14. 

After the calculation of the states, the angular velocity can then be reconstructed, allowing 
a better control of the spacecraft during the passages in the Earth’s shadow: 

 bωω ˆ~ −=  (26) 

where ω%  is the gyroscope measurement. 

5 SIMULATION RESULTS 

Initial conditions for the simulations were: circular orbit, inclination of 25° and an altitude 
of 630Km. Attitude in Euler angles at beginning simulation was adopted as 60°, 30° and 40° 
and body angular velocities were set at 0.6 rpm, 0.3 rpm e 0.9 rpm. Reaction wheels speed 
started at 0 rpm.  

Simulation time was set to 18000 s, which is approximately three orbits, to allow the 
Kalman filter to converge to a stable estimate for the bias. The satellite passages through the 
Earth’s shadow occurred at 2237 sec to 4374 sec in the first orbit, 8065 sec to 10200 sec in 
the second and 13890 sec to 16030 sec in the third orbit. 

 The gyroscope bias and noise level were set at constant 50°/h and 5°/h for all axes, 
respectively, and the disturbance torque considered was a residual magnetic moment, with 



magnitude 0.01 Am2, which is a high value considering the spacecraft characteristics, but it 
allows to validate the control strategies and momentum dumping. 

The results for the attitude error and estimated bias are shown in Figures 2 and 3. Figure 2 
shows the Euler angle of a Euler axis and angle attitude. Since the Euler angle is null for a 
null attitude, this angle can be understood also as an error angle. The PID controller managed 
to keep the pointing accuracy lower than 5° and the bias estimated by the Kalman filter 
remained inside 5° deviation. The attitude presented a larger error during the first passage 
through the Earth’s shadow, on account of the still converging bias. 
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Figure 2: Attitude error in Euler angle 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-20

-10

0

10

20

30

40

50

60

70

Time (s)

G
yr

o
 b

ia
s 

(°
/h

)

 

 

 

Figure 3: Estimated gyroscope bias by the Kalman filter 



The reaction wheel speeds for each of the simulations are shown in Figure 4. It can be 
noted that, without the desaturation, the wheel speeds are increasing toward saturation (a), but 
with the CCPL (b) and bang-bang (c) desaturation techniques, the wheel angular rates were 
brought close to the reference speed (null speed). Subtracting the results of CCPL and bang-
bang techniques (d), the maximum difference in the wheel’s speed is about 100 rpm, 
corresponding to 1% of the maximum supported wheel speed. Comparing the total energy 
spent, calculated by the integral of the quadratic magnetic moment (e), it can be noted that 
CCPL (blue line) is about 20% lower than bang-bang (red line). This leads to a better 
performance per energy in the CCPL strategy. 
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Figure 4: Reaction wheel speeds: a) without desaturation, b) with CCPL, c) with bang-bang 
technics, d) the difference between CCPL and bang-bang and e) the total energy spent with 

CCPL (blue line) and bang-bang (red line). 

6 CONCLUSIONS 

This work presented the CONASAT nanosatellite configuration, as well its attitude control 
components and equations of motion. The attitude quaternion is computed by a TRIAD 
algorithm based on measures of a magnetometer and coarse sun sensors. A Kalman filter 
provides the attitude quaternion and gyroscope bias estimation for a PID controller acting on a 



set of 3 reaction wheels. For the wheel desaturation strategy, the basic equations for the CCPL 
and bang-bang methods were analyzed and compared, and could be noted that CCPL 
presented a very close performance to bang-bang with less energy consumption. The 
implemented Kalman filter, which was used to estimate attitude represented by quaternion 
and gyroscope bias, was adapted to avoid the covariance matrix singularity, an inherent 
problem when using quaternions. 

The results have shown that the methods applied here achieved the goals of attitude error 
(5°) and the desaturation of the reaction wheel angular momentum. 
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