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Abstract: Cost reduction on system tests with hardware in the loop during qualification phase of the on-
board attitude control software imply in increasingly simulation realism. Attitude simulation software not 

only has to mimic the dynamical behavior of the spacecraft, but also shall be easily configurable, to adapt 

to different orbit, attitude pointing requirements, environment disturbances, sensors, actuators, and to run 

in real-time among other minor requirements. As the requirements for accuracy and stability for attitude 

pointing has increased in many modern missions, so do the complexity of the simulation algorithms and 

necessity for dynamical realism. Rigid body dynamics can be considered excessively simple to model a 

satellite with several reaction wheels, non-rigid structures, unbalanced solar arrays, fuel and liquid 

sloshing, not to mention crew motion and vehicle docking. This work presents the efforts being carried out 

to fulfill the requirements of the Brazilian space missions, nominally Multi Mission Platform, with a 

simulation environment capable to accomplish from early definition and mission analysis phase up to 

acceptance tests of the attitude control software. Development is being conducted in order to achieve a high 

degree of realism and range of applicability of the simulation software, compatible with the expected cost 

reduction of the simulation hardware (ordinary PCs). The kinematics and dynamic models to support AOCS 

(Attitude and Orbit Control Subsystem) simulation and testing with or without hardware-in-the-loop for 

Brazilian space missions are presented. Normally the dynamic equations are expressed in angular 

momentum components, due to the high complexity of these equations when derived in terms of the angular 

velocity. This, of course, is particularly important in satellites composed by several articulated rigid bodies 

as solar panels, robotic arms, space booms, deployable antennas, etc. Nevertheless, the inverse of the 

inertia matrix shall be calculated on the run, since it varies in time. This can be somewhat slow, mainly 

considering the high degree of freedom in dynamics of satellites with articulated panels and reaction 

wheels. In this case a more complex but fast set of equations in terms of the angular velocity is the best 

choice. This work describes the attitude dynamic equations expressed in angular velocities for satellites 

with appendages (solar panels, telescopes, directional antennas, etc.) and reaction wheels. They can be 

easily extended, however, to include nutation dampers and robotic arms. As usual, this formulation requires 

the knowledge of the acting torque in the connection joint, which is not always understood, modeled or 

known. So the dynamic model presented in this work uses the angular acceleration instead of the torque at 

the joint, which simplifies and reduces the order of the differential equations. Simulation results are 

presented, emphasizing the difference between the behavior of rigid body and articulated rigid bodies. 
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1. Introduction 

 

The equations of motion of a rigid body are normally expressed in terms of its inertia matrix. 

Because the control theory also uses arrays and vectors to express the control of a linear system, it is 

easer to simulate both the dynamics and control by means of a computer language that avoids the 

tedious work of algorithm construction to perform a simple array multiplication. Languages such as 

Matlab or Labview not only operate easily with vectors and matrices, but also have many resources 

to handle hardware interfaces and to run in real time. Programs written in these languages can be 

compiled to increase performance, since they usually are interpreted. Add to this a block-

programming environment, and apparently the solution for the simulation environment was found. 

However, this simplification hides a code often oversized, slow and inefficient. Moreover, much of 

the time spent in attitude simulation is lost in calculation of space environment parameters, such as 

atmospheric density, geomagnetic and gravitational fields, whose algorithms do not take benefit 

from operations between matrices or block-programming packages. In fact, some tests performed by 



the author showed that the processing time of a rigid body attitude simulation programmed in C is at 

least 10 times faster than one in compiled Matlab, and at least 10,000 times faster than in interpreted 

Matlab. It is obvious that the increasing of the computing processing power tips the scales to the 

side of the graphical programming environment. However, it is still likely the next generation of 

satellites shall have the on board attitude control programmed in conventional way, due to code size, 

performance and reliability requirements. 

 

This paper presents the efforts being made in the sense to develop a simulation environment capable 

to act in the Attitude and Orbit Control Subsystem (AOCS) design since early phases (conception 

and mission analysis) up to qualification and integration tests. Next sections present the package 

overview, the dynamic model, some results coming from simulation and the conclusions. 

 

2. Simulation package 

 

This section will present a description of the simulation package designed to qualify the attitude 

control software for Brazilian’s space program MMP (Multi Mission Platform) both with and 

without hardware in the loop. The package was developed in C++ and includes the following 

features:  

 

• Dynamic equations for a single rigid body or multiple bodies articulated to the satellite, such 

as solar panels or robotic arms.  

• Simplified and functional model for sensors and actuators. 

• Modular construction to allow easy reconfiguration of the simulation process.  

• Extensive library, which includes coordinate transformation and analytical orbit propagation.  

• Real time functions allow to compute attitude at high frequencies and synchronous with the 

computer clock. 

 

Even considering the package has been developed in order to support the MMP, it is, in fact, 

generic. This means it can be freely configured to simulate any satellite that has similar or 

uncommon characteristics, including spin or gravity-gradient stabilized satellites. Package functions 

are grouped in several modules: attitude propagator, coordinate conversion, attitude control 

functions, orbital and environmental ephemeris, sensors and actuators simulation, environmental 

disturbances and real-time processing control. Additionally it was implemented a set of structures to 

perform operations involving matrices and vectors, in order to simplify program coding and 

debugging. Among this structures are matrix3, vector3 and quaternion. Some math operators 

were overridden in order to achieve a code similar to that in Matlab. These include operations 

between matrices and vectors to allow the symbolic representation of these operations, like product, 

sum, dot (internal) and cross products. Thus, the code for valid operations between matrices and 

vectors is something like this: 

 
matrix3 rot_mat1, rot_mat2, rot_mat3; // matrix declaration 
vector3 vec1, vec_pos;   // vector declaration 
quaternion q;    // quaternion declaration 
... 
rot_mat1 = {0.2, 0, -1, 0.6, 1, -2, 2, 1.5, 3}; // matrix values 
vec_pos = {1543.3, 764.0, -2414.8};  // vector values 
vec_pos._1 = rot_mat1._1._3;   // or this way 

 vec_pos._2 = rot_mat1._2._3; 
 vec_pos._3 = rot_mat1._3._3; 

... 
mat_rot = (rot_mat1 + rot_mat2)*rot_mat3*vec_pos; // valid 

 

The product of quaternions, in turn, provides direct attitude transformation between three coordinate 

systems, as explained in [1]. The quaternion structure assumes that the first three values (q._1, q._2 



and q._3) are the vector components while the fourth (q._4) stores the scalar value. Additionally, 

some functions were added to provide matrix manipulation, such as to invert or to transpose a 

matrix, to normalize a vector or a quaternion, to assign values to a matrix or vector, etc. 

 

The package was developed with the sense of “state machine” where the simulation parameters are 

stored in memory and then used during attitude propagation. Several functions to assign specific 

values to variables were implemented, as well as functions that restore previously stored values. For 

instance, the functions int set_number_wheels (int nwheels), and  int get_number_wheels 
() allow to configure the number of momentum or reaction wheels in simulation and retrieve this 

value, respectively. Also, int set_wheel_vector (int ind_wheel, vector3 vec_wheel) and 

vector3 get_wheel_vector (int ind_wheel) allow to set and to retrieve the axis direction of a 

given wheel. Some values are available only after starting the simulation process, like the wheel 

speed which can be retrieved by double get_wheel_speed (int ind_wheel). 

 

Sensors and actuators were modeled based in their characteristics instead of specific equipment. All 

the parameters are configurable, so the package can virtually mimic any sensor whose 

characteristics are modeled. For example, a star sensor has two parameters: the output standard 

deviation for each axis and the transformation matrix of the sensor, including misalignments. 

Functions were implemented to simulate the following attitude control equipment: thrusters (cold or 

hot gas jets), magnetic coils, reaction or momentum wheels, magnetometers, star sensor, inertial 

unit, analog sun sensors and a GPS receiver. All these equipment can be selected individually. 
 

Orbit propagation employs an analytical model with includes the effect of Earth oblateness [2], and 

a SGP8 [3] model, selected by the user. The inertial position of Sun is also achieved by an analytical 

model from [4] and [5]. It was implemented in the package a C version of the IGFF10 geomagnetic 

model, adapted by the author from a FORTRAN version produced by Susan Macmillan from British 

Geological Survey [6]. A complete description of the package can be seen in [7]. 

 

3. Kinematic and dynamic equations of motion for multi body satellite 

 

The kinematic equations of a rotational body are written in quaternion, as usual, and are given by: 
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where Q is the attitude quaternion and ( )1 1 1

T
= ω ω ωω  is the angular velocity vector [8].  

Expressing the satellite angular momentum with respect to the center of mass, the dynamic 

equations of a rigid body result 
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where I is the inertia matrix and gcm is the total external torque applied to the satellite (no internal 

reaction wheel torques at this moment). However, considering a satellite with N articulated 

appendages to the main body through spherical joints, each one considered also rigid, the total 

angular momentum can be written with respect to a fixed point in the main body, since the center of 

mass changes in satellite frame due to appendage motions. Hughes [8] states that the additional 

complexity in the equations of motion does not justify deriving the angular momentum with respect 



to the mass center. We shall see that the angular momentum relative to a fixed point is also complex 

when several appendages are positioned in the satellite body, besides computationally heavy. The 

equations of motion with respect to a fixed point O are: 
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where f are the resulting external forces, go is the external torques (relative to O), p is the total 

satellite momentum, vo is satellite velocity relative to an inertial frame, ho is the total angular 

momentum and Cbn is the rotation matrix between the main body axes and the n
th
 appendage system 

coordinates, fixed in its center of mass, as seen in Fig. 1. hj,n is the appendage angular momentum 

with respect to the joint point Jn, bn is the positioning vector of the articulated joint, dn is the 

position of the appendage center of mass relative to its joint, gj,n is the net torque applied in the joint 

n by the satellite (no external torque on appendage), mn is its mass and ωωωωn is the appendage angular 
velocity relative to the main body. Superscript × indicates the matrix of the cross product [8], and 
superscript b or n means that the derivative is taken with respect to the main body or n

th
 appendage, 

respectively. 
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Figure 1. Satellite main body RRRR with articulated appendages AAAAn. 

 

The linear and angular momentum of the whole satellite, and the angular momentum of the 

appendage n can be written, respectively, as 
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where m is the satellite mass including appendages and the inertias are obtained from 
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and Jb is the inertia matrix of the main body relative to O, and In is the inertia matrix of appendage n 

relative to its center of mass Cn in appendage fixed frame. Jon, Jbd,n and Jdb,n are named mixed 

inertia. The momentum equations can also be presented in the system inertia matrix form P = M V 

[8], or: 
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The velocities vo, ωωωω and ωωωωn need to be computed in order to solve the equations of motion, so the 
system inertia matrix M shall be inverted. This can be done by a recursive block wise inversion, 

since M is symmetric, with order of 6 + N. Unfortunately this inversion must be evaluated at each 

time step because the rotation matrix Cbn is time dependent. The kinetic energy is simple given by 
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A drawback in the above equations is the normally unknown torque gj,n at each joint. The electrical 

and mechanical characteristics of the motors and gears at the joint are difficult to obtain, and linear 

models are far from realistic. To make things worse, the driving mechanism is frequently controlled 

in closed loop, as, for instance, in solar panels that follow the sun around the orbit. It is proposed 

then that the appendage angular velocity nω or acceleration nωɺ  can be used instead the unknown 

torque. This procedure reduces the order of the whole system to 6 degree, since it is assumed that 

the angular velocity in each joint is already known. Within this approach the equations of motion 

can be derived for the angular momentum about the system center of mass, which is now uncoupled 

from the translation motion vo resulting a 3 degree system: 
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and now the inertia matrices are given by 
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where Ib is the inertia matrix of the main body relative to its center of mass Cb, Jdkdn is a cross 

inertia between the appendages n and k and rcm is the center of mass in main body frame, obtained 

from 
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The angular momentum hcm about the system center of mass Cm is therefore given by 
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The above equations can be changed in order to comply to a gyrostat, dual spin or to a satellite 

equipped with K reaction or momentum wheels. The dynamic equations of motion result 
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where gk is the torque applied to wheel k, and ak is the unit vector of its rotation axis in spacecraft 

coordinates. Since each wheel exchange momentum with the satellite, the dynamic equations shall 

include the angular momentum hw,k of K wheels: 

 

                                                                         ,w k kh g=ɺ . (13) 

  

The total angular momentum of the satellite shall also be modified to include the wheels: 
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and the inertia matrix is computed by 

 

                      , , , , , ,

1 1

[ ]
N k

T T

b r bb n bd n on bn br n rd n dr n k s k k

n k

I
= =

= + + + + − − − −∑ ∑J I J J J J C J J J a a , (15) 

 

in which Ik,s is the inertia of the wheel’s rotor k around its spin axis. 

 

From the model presented above it is clear that the rotation matrix Cbn between the main body and 

each appendage frame shall be provided in order to compute the attitude. However, those matrices 

are time dependent and have only 3 independent parameters. The vectors bn and dn shall also be 

provided, and together with the angular velocity vector ωωωωn sum 12 parameters for each appendage. A 
small reduction in this number can be achieve if the joint is supposed to be rotational instead of a 

spherical, which is very reasonable since most of satellites appendages rotates around a given axis. 

In this case each appendage shall have 10 independent parameters. In the simulation package it was 

adopted a Denavit-Hartemberg parameters, which allows the complete specification of the rotation 



and translation between coordinate systems. They are largely used in robotics to perform coordinate 

transformation between robot joints and links [9], [10]. The 10 Denavit-Hartemberg parameters for 

coordinate transformation are shown in Fig. 2. They are three link angles θn0, θn1 + θn(t) and θn2; 
three link offsets dn0, dn1 and dn2; two link lengths an0 and an1 and two link twists tn0 and tn1. It is 

worth to mention that the joint rotation angle, θn(t), comes from the double numeric integration of 
( )n tωɺ . The rotation matrix and vectors for appendage n are then achieved by 
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Figure 2. Denavit-Hartemberg parameters for appendage rotation. 
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It shall be noted that θn1 is already the second integration constant. The elementary rotation matrices 
Ri around the i axis are defined by 
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4. Simulation results 

 

Some tests were performed in order to assure the accuracy, reliability and correctness of the 

software package. Attitude simulation of single rigid body was carried out with expected nutation 

and precession behaviors. The results can be seen in video animation [11] made by the author.  



 

Procedures to control the simulation in real time were developed and tested for clock 

synchronization. The real time control adjusts the numeric integration step so as to keep tracking 

between the simulation time and the computer clock. This kind of control is usually employed in 

computer games and car and airplane simulators. Results for step size adjustment are presented in 

Fig. 3 that shows the synchronization error as function of the propagation time. The tracking error 

remains below 5 ms most of the time. Step size for attitude propagation can be as low as 50 

microseconds in a 2.4 GHz computer.  
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Figure 3. Real time error during step size adjustment and synchronization control. 

 

Examples of simulation in sensors output are presented in Fig. 4 for a magnetometer (single axis), in 

Fig. 5 for a star sensor (single axis shown here), Fig. 6 for a GPS (showing only the semi-major 

axis), and Fig. 7 shows a single axis gyroscope. Models for sensors take into account standard 

deviation for random white noise, scale factor, bias and alignment. All these parameters are 

configurable by specific functions. For instance, the function int set_inertial_unit (matrix3 
axis_dir, vector3 scale_error, vector3 bias, matrix3 random_drift, matrix3 

random_walk) allows configuring a 3-axis gyroscope. In all these figures the initial attitude is 80
o
, 

−20o and −150o for a 313 Euler rotation angles, with no perturbation torque or control during 
simulation and no initial angular velocity. The keplerian elements for orbit were: semi-major axis of 

6978 km, eccentricity of 0.06, inclination 1 rad, perigee argument of 0.5 rad and null values for right 

ascension of the ascending node and mean anomaly. Date and time were chosen as Jan. 1
st
 2001 at 

10:40:00 hour UTC. The satellite is a rigid body with diagonal inertia matrix of 10, 15 and 20 kg m
2
 

in axes x, y and z. A noise with standard deviation of 2 nT and a bias of −2 nT was used in the 
magnetometer simulation of Fig. 4. The star sensor in Fig. 5 has a noise with 6 10

-5
 rad standard 

deviation in x-axis, and was sampled at 1 Hz. Figure 6 shows the GPS receiver output converted to 

keplerian elements. The variation in the semi-major axis is due to the osculating elements coming 

from the SGP8 orbit propagation. Simulation of a single axis gyro in z direction shown in Fig. 7 

took in consideration a null scale factor, bias of 5 10
-9
 rad/sec, random drift of 10

-8
 rad/sec and 

random walk of 4 10
-10
 rad/sec

3/2
.  
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Figure 4. Simulation of a magnetometer (X axis) output.  
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Figure 5. Simulation of star sensor output in X axis.  
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Figure 6. Simulated output of a GPS receiver, converted to keplerian elements (only semi-

major axis is shown)  
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Figure 7. Simulated gyro output in z axis, sampled at 1 Hz.   

 

In Fig. 8 the output for 8 analog solar sensors in octahedron configuration are shown as function of 

time.  It can be seen in this figure that the satellite enters the Earth shadow around 190 sec. 

Transition in penumbra is clearly noted at that time. The sensors are modeled with a noise with 0.01 

of standard deviation and a multiplicative noise proportional to sensor output with standard 

deviation of 0.02. A velocity of 3.6
o
 per second around the satellite z-axis was introduced in this 

simulation. 
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Figure 8. Simulation of 8 analog sun sensors in octahedron configuration. Earth and Moon 

albedos were not considered. 

 

At the time of this writing the dynamic equations for a satellite with appendages, as reported in 

Section 3, was not yet coded in to the package, although a rigid body with reaction wheels can be 

simulated in the current version. Figure 9 shows a simulated attitude acquisition of a satellite with 6 

thrusters of 2 N each. The thruster torques were 0.8 Nm in positive and negative directions around 

the satellite coordinate axes. The attitude control algorithm reduces the satellite spin ratio whenever 

the angular velocity is larger than 0.1 rad/sec, or, otherwise, uses a bang-bang control. The thrusters 

for each axis are selected by the sign of the attitude error, which is computed by a term proportional 

to a 1-2-3 attitude angles plus a term proportional to the angular velocity. The proportional 

constants were 1 and 6 respectively. Figure 10 presents the phase diagram of the acquisition 

maneuver. In the figures the red, green and blue curves were assigned to the x, y and z axes, 

respectively. A dead band based on thruster’s minimum impulse of 0.05 sec (seen as two straight 

parallel lines in Fig. 10) was introduced in order to avoid unnecessary thruster activation. 
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Figure 9. Attitude angles of an attitude acquisition simulation by means of 6 thrusters. 
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Figure 10. Phase diagram of the simulated attitude acquisition maneuver. 

 

5. Conclusions 

 

A first version of the attitude simulation software was presented here. The software package was 

written in C and is composed by several functions capable to configure the satellite properties, 

sensors, actuators, attitude and orbit. However, the control loop algorithm and its coding is still an 

attribution of the user. The package has 36 operators to perform vector-matrix operations in a 

Matlab like style, and sums something around 180 functions total, among coordinate 

transformations (orbit and attitude), sensor simulation, numeric integrator selection and 

configuration, satellite mass properties, actuators selection and switching, magnetic field 

computation, Sun position and real time processing control.   

 

Software validation was carried out by means of the dynamic behavior of the satellite attitude, 

together with analysis of the angular momentum and kinetic energy. Some video animations of the 

dynamics produced with this package and POVray are available at [11].  

 

Next steps to improve the software package are:  

• To operate the attitude simulator and controller in separated computers communicating 

through serial interface;  



• To implement and to test multi-body attitude dynamics  

• To include some environmental perturbations – atmospheric drag, solar pressure, gravity 

gradient torque and residual magnetic torque 

• To improve the sensor and actuator models 
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