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SATELLITE ATTITUDE CONTROL
USING MULTILAYER PERCEPTION NEURAL NETWORKS

•
Valdemir Carrara

Sebastião Eduardo Corsatto Varotto t
Atair Rios Netot

lhis work simulates and tests the use of artificial neural networks for satellite
attitude dynamics identification and control. ln order to exemplify this
application, a satellite with a rigid main body, three reaction wheels and three
flexible solar panels was chosen (Iay-out similar to Brazilian Remate Sensing
Satellite). lhe main objective is to test the neural control and analyze its
interaction with the elastic motion and variable geometry of the satellite. Two
control schemes are used. the Internal Model Control (IMC) and a modified
version of the Fedback Leaming Control (FLC). lhe identification of neural
nets parameters is performed by a Kalman filtering algorithm with a local
paralleI processing version in the IMC scheme and by the steepest descent
method in the FLC scheme.

INTRODUCTION

In recent years the neural computing has evolved significantly. Main reason for
the coming back of neural nets is, besides the increasing processing power of the new
generation of computers, the development of new neural net architectures and training
algorithms. The number of applications has also increased: vehicle guidance, fmancial
analysis, printed circuit layout, voice synthesis and recognition, pattem classification,
optical character recognition, exchange rate forecast, manufacturing process control and
robotics among others (Ref. 1). Aeronautics also has found use for neural nets, mainly in
failure analysis and detection, and automatic guidance and control. Although space
applieations are still limited, there are several possibilities: subsystem failure deteetion,
isolation and identification, autonomous orbit propagation and control (Ref. 2), attitude
determination and eontrol, intelligent task managing, ete.

Attitude control of satellites normally is based on linearization of the dynamical
equations of motion and applieation of an optirnization method in order to guarantee the

.stability and eontrollability under the environmental eonditions. Neural nets ean
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overcome the non-linearities ofthe attitude behavior. Beyond the non-linearities inherent
ofthe attitude dynamics, the effect ofnon-rigidity can also be present in the problem, due
to flexibility of some structure component and to geometry variation (due to module
accretion, mass migration or appendage motion, for instance).

In what follows, two neural control methods are tested for attitude control, by
.using simulated data of a satellite attitude behavior where either flexibles appendages or
variable geometry is present. Section 2 presents the general perceptron neural net as well
as the training procedures. The equations of motion are presented in Section 3.
Simulation, test results and conclusions follow the preceding sections.

NEURAL NETWORKS

A neural network is a computational structure composed of several basic units
called artificial neurons. Each neuron can be understood as an operator that process with a
nonlinear activation function f the weighted sum of its inputs to produce an output
signal. The signal processing performed by the neuron establishes its functionality. The
connections between the artificial neurons, on the other hand, defme the behavior of the
net, identify its applicability and training methods. In a multilayer perceptron network the
neurons are grouped in one or more layers, with the output of each layer being the input
to the next one.

The training process consists in adjusting the neuron weights based on the
expected output and some optimization rules. In a supervised scheme the weights are
adjusted interactively, by comparing the output of the network with the desired value at
each step. This means that the training process teaches the net what should be its output
for a given input.

A feedforward multilayer percéptron network can be seen as a mapping function
with no input elements and nL outputs. This neural network is composed by L layers with

n, (I = 1,2, ... , L) neurons in layer I. If x: is the output ofthe;t" neuron oflayer I, w~ is

the weight ofthejlh input (coming from thel neuron ofthe preceding layer) andl is the
activation function, then:

(I)

where x~-'is the output of the l' neuron in previous layer I-I, and b: is the bias,

introduced to allow the neuron to present a non-null output even in presence of a null
input.

The determination process of the neuron bias can be transferred to the

determination of the neuron weights if one admits the I?resence of a new constant input.Eq. (1) can be expressed in vector-matrix form, and ifW' is the weight matrix, then

Xl = f(xl)= I(wli-') (2)
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(3)

where W includes the neuron bias in the Iast column; and the dimensions of the output
vector X' and the weight matrix w' are now n,+ 1 e nt x n,_/+1, respectively .

.~ A simple feedforward neural net with linear activation function in the output layer
and the sigmoid activation function, Eq. (3), in the hidden Iayer can be used to represent
dynaínical systems and limited continuous functions (Ref. 3).

f(x) = l-e-x
l+ex

The increasing number of hidden layers normalIy makes the neural net to better
represent the dynamical system and to reduce the output error (Ref. 4 and Ref. 5) even
when the same number of neurons are taken. Nevertheless, the capacity of generalization,
J. e. the ability to interpoIate between points where the neural net was not trained, is more
accentuated on nets with fewer or even only one hidden Iayer (Ref. 6). On the other hand,
nets with high number of neurons or Iayers have smalI output errors at the trained points.
Thus if the dynamics of the system is not complex a neural net with one hidden sigmoid
and linear output Iayers is sufficient for a large number of applications. The number of
neurons in the hidden Iayers is important for the approximation degree: few neurons tend
to decrease the stability and result in a bad approximation, too many neurons cause
oscillation on the output between the trained points (Ref. 7).

Backpropagation Algorithm

Training a neural net generalIy consists in applying methods in order to adjust or
estimate the neuron weights. The training process normalIy minimizes the neural net
output error through the application of an optimization method. AlI methods need to
know how the net output varies with respect to the variation of a given neuron weighí.
This can be achieved with the back propagation algorithm (Ref. 8), which obtains the
partial derivative of the output elements in a recursive way. ln matrix form the back

propagation algorithm gives the derivative of the output vector with respect to the l'
weight ofthe i neuron ofthe t-h layer:

ôxL Ir. I-I r--I = IJ. LO... xj ••• ° ,
8wy

where 6,.1 is the back pr~pagation matrix, obtained from:

ti = ti+) WI+1FI

(4)

(5)

(6)

with initial condition at output layer I given by Ii.L = F-, where fi' is a diagonal matrix with
the derivatives ofthe activation functionj:

FI = diag[ df~r) :i = 1,2,... ,nl]

It should be noted that, due to the inclusion of the neuron bias on the weight
matrix, fi' should be a nt-l+ 1 x nl-l+ 1 matrix, with the last diagonal element equal to zero.
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1n order to reduce the computational effort both F and RI can be resized with elimination
ofthe Iast row when performing matrix products.

Steepest Descent Method"
The steepest descent method, eombined with the baekpropagation, exhibits a high

degree of paralelism and simplieity. The weights are corrected based on the minimization
ofthe neural net output error. Weight updating starts at the net output layer and then the
error is backpropagated to the preceeding layer in order to compute its weight correetions.
The minimization criterion uses the network output quadratic error as the performanee
index:

I
J(t) = 2"&(t)T &(t), &(t) = yd (t) - y(t)

(7)

(8)

where yd(t) and y(t) are expeeted and actual network output; and &(t) is the network output
error at time t.

Weight updatings of layer k are performed using:

Wl (t + 1) = Wl (t) - íL vf , vf = -tt &XI-1T

where the gradient of the square backpropagated error Vf comes from the
backpropagation matrix.

Convergence of the weights depends on the adjusting of the learning rate
eoeffieient Â., ranging from Oto 1.

Stochastic Optimal Parameter Estimation Neural Nets Training

The supervised training of a neural net to learn a nonlinear continuous mapping:

j(x):x E De Rnl ~ y E RnO (9)

ean naturally be treated as a problem of estimating the connection weight parameters w in
the network correspondent mapping:

je (x, w):x E D c Rnl ~ ye E RnO (10)

sueh as to have F(x, W) as close as possible to f(x) for x E D. A set of pairs (x(t)J!{t»,
t=1,2, ...N, given by the mapping in Eq.(9) is selected in order to get this approximation,
and the parameters are usually determined under the condition of minimizing

J(w) =-i[[w-w f"p-I[W-W]+ t~(t)- ye(t)f R-1(t)(y(t)- ye(t)]] (11)
--I --I

where w is given a priori value of w; ye(t) = j e(x(t),w); P and R (t) are weight
matrices.
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To solve the problem given by Eq. (lI) an iterative scheme based on linear
perturbation can to be used (Ref. 9). In a kth typical iteration, one usually takes:

'"' 1 ~ r-ir ]- J(w(k» = -Jw(k) - w P w(k) - w +. 2

N

L (ak[y(t) - y(k,t)]- f:(x(t), w(k»[w(k) - w(k)] r1=1

R-1(t) (ak[Y(t) - y(k,t)]- f:(x(t), w(k»[w(k) - w(k)] ] J (12)

where k=1,2, ... , kc; wl = w, Y(k,t) = P(x(t), w(k», f:(x(t), w(k» is the matrix offirst

-partial derivatives with respect to w; 0< ak:s; 1 is an adjusting parameter to guarantee the
hypothesis of linear perturbation. The solution of Eq.(l2) is formally equivalent to the
following stochastic parameter estimation problem

w=w(k)+s (13)

ak[y(t) - y(k,t)] = f:(x(t), w(k»[w(k) - w(k)]+ v(t) (14)

where, E[E]=O, E(Ee]=p, E[v(t)] = O, E(V(t)vT(t)]=R(t), usuallydiagonal;

E[.] is the expectation value operator; se 1..(t) are assumed to be gaussian distributed and
not correlated; and 1..(t) is also assumed not correlated along t=1,2, ... ,N.

The problem of estimating the vector of weights w: of neuron i of layer I , can
be solved in a local way, through an estimator of Gauss Markov, in the Kalman form
(Ref. 9); with the assumptions that:

(i) for weight parameters wa(k) oflayers after the Ith layer there are already available

wa(k) and Pa(k) the estimated values of parameters and of the covariance matrix

ofthe associated erros ea(k);

(ii) for weight parameters w.(k) ofther neurons in the same layer I, there are a priori

estimates w.(k) and ~(k);

(ili)for weight parameters we(k) ofthe earlier layers there are a priori estimates we(k)
and~(k) .

In a typical iteration k=I,2, ..., kc, thus results the local estimation:

-I -I ri -I Jw:(k)=wl +KI(k>tzl(k)-H:(k)wl(k)

I Ir -I I 1;;1P; (k) = 1,1- K/(k)HI (k) ri

-I -I I r [I -I I r -I JIKI(k) = PIHI (k) HI (k)PIHI (k) +RI(k)
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-1 1-1 Jwhere Rt(k) = El,Vt(k)v: (k)' is the covariance matrix of observation errors and can be
evaluate as:

-1 - -
Rt(k) = I",. (x(t), w(k»Pa (k)/",. (X(t), w(k»T +

I", (X(t), w(k»P.(k)lw (X(t), W(k»' +, .
I", (X(t), W(k»Pe(k)lw (x(t),W(k»)' + R(t), .

AITITUDE DYNAMICS

(18)

The variation rate of the angular momentum, expressed in body coordinates xo, yo
and xo, is (Ref.ll) and (Ref. 12):

(19)

where 10 is the satellite inertia matrix, oo~ is its angular velocity; no is the vector

product matrix, de~ed by:

[ o -ooz 00 y ]
n(oo) = _ooz o -00 x (20)
, ooy oox o

and external torque is separated in environrnental or disturbance torque, Npert arld attitude
control torque, Neont• If the satellite is composed of articulated appendages, or if some
appendages like the solar arrays are flexible, the above equations shall be modified in
order to reflect the effects caused by the non-rigidity.

Articulated Appendages

An articulated satellite has a variable geometry, due to the relative motion of the
appendages. Consider, for instance, a spacecraft pointed to Earth with solar arrays
tracking the Sun, or the process of unfolding the solar arrays after orbit injection, or a
robot space arm or even the docking of a new module in a space station. In aU these
examples, both the inertia and center of mass position vary in time. Suppose that a rigid
main body with n articulated and also rigid appendages composes the satellite. In order to
avoid increasing the system degrees of freedom, the angular velocities and accelerations
of each articulation is supposed known. This is true for a large number of satellites, as for
example the Earth pointing satellite which drives the solar arrays to the Sun.

The angular momentum rate ofthe satellite can now be expressed as a sum ofthe
individual momenta:

n

iO,=L n(r:);:: dmo +LI n(r;);:; dml: .
• 1:=1 t
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where ro and rle are, respectively, the position ofthe mass elements dmo e dmle, belonging
to the main body and the appendage k (k = I, ...,n). The momentum rate with respect to
the satellite center of mass and the position vectors are expressed in main body
coortlinates. Vo and VIe are the volumes of the main body and appendage k. The above
integral yields:

t = (Io+ JnYo: + 0.(00:)/000: + Hn . (22)

Except for Jn and Hn, the angular momentum rate is similar to the Eq. (14). Jn and
- Hn represent the appendage and center of mass motion effects. They are defined by:

n

Jn = L(Ak,o /k AJ.o -mk O(a;k -a:')O(a;k -a:'»)+
1=1

and

n n

+L(mk O(a;k -a:'»)L(flk O(a;k -a:,»)k=1 k=1
(23)

(24)

n

Hn = L [0(00: + oo~)Ak.O/kAJ.o(OO:+ oo~)+ Ak.O/kAJ.o(Ô>~+ O(oo:)oo~)]+
k=1

+ tmkO(a:k -a:')Pk -(tmkO(a:k -a~)Pk )tJ.!kPk'

where /Ie is the inertia matrix of appendage k expressed in the appendage coordinate
system. Afc,o is the rotation matrix between the appendage k and the main body coordinate
systems and mie is the appendage mass. The position of a fIxed point in the articulation k
defmes the vector aole, with respect to the origin of the main body and afco, with respect to
the origin ofthe appendage frames. The mass proportion J.!1e is defmed by:

mk
J.!k = n (25)

mo + Lmk
k=1

where mo is the main body mass. The angular acceleration Pie is given by:

Pk = O(oo:)O(oo:)(a:k -a:')-O(oo:)O(oo~)a:'-

-O(oo~)O(oo: +~~)a:' +O(a:')(O(oo:)oo~ +c.õn (26)

Note that the appendage angular velocity oo~ and accelerationô>~ vectors defme

both the momentum and the direction of the articulation joint. Equations of motion can
now be integrated in order to simulate the attitude of a satellite with variable geometry,

Flexible Dynamics

In this case the equations of motion are obtained by the Lagrangian approach for
quasi-coordinates (rotational motion) and for generalized coordinates (elastic motion) .
The development is addressed to a peculiar class of satellites constituted of a rigid central
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bodyalso eontaining rigid rotors, and reetangular solar panels whieh are eonsidered
flexible after deployment.

The Lagrangian fonnulation for quasi-eoordinates and for generalized eoordinates
( Ref. 13) has been used to derive the equations of motion as well as Meiroviteh notation.

l' A flexible spaeecraft represents a distributed-parameter system whieh in theory has an
. infmite number of degrees of freedom. In praetiee, the system must be discretized, to

avoid partial differential equations in the formulation. It ean be done by the fmite element
teehnique, the lumped parameter method or the assumed modes method. In this work the
last one was used and thus, the elastie displaeement veetor ean be written as a linear
eombination of spaee-dependent admissible veetor funetions cjl multiplied by time
dependent generalized eoordinates (Ref. 13 ) q in thes fonn:

{v}= [cjl]{q} (27)

(30)

where [cjl]is a reetangular matrix ofspace-dependent admissible funetions and {q} is

time-dependent veetor of generalized eoordinates.

Taking into aeeount this diserretization proeedure, the kinetie energy ean be
written as:

T = !{ro}T[J]{ro} +!{O}T[I]{O} +!{q}T[M]{q} +
2 2 2

{ro}T[M]{O} + {ro}T[H]{q} (28)

where [J] and [I] are the inertia matriees of the satellite in defonned state and of the
rotors, respeetively; {ro} e {O} are the angular veloeity veetors ofthe satellite (absolute)
and ofthe rotor (relative to the satellite), respeetively; {ê{} is the rate of ehange in time of

the generalized elastie displaeement veetor, and fmally [M] e [H] are matriees involving
integrais of spaee-dependent admissible funetions.

The elastie potential energy ean be written as:

1

V = 2" {q}T [K]{q} (29)

where [K] is a symmetrie matrix involving spatial derivatives ofthe admissible funetions.
The modified dynamies Euler's Equations were them derived by the Lagrangian

Fonnulation for quasi-eoordinates, resulting:

[J]{c.i>}+ [j]{ro} + [éil][J]{ro}+ [éil][I]{O}+

[éil][H]{ê{}+ [H]{q} = {Tp} - {Tcl

where [éil]is the same as O[ro] in Eq. 20.

The elastie dynamie equations have been derived by the Lagrangian fonnulation
for generalized eoordinates and are given by:

[M] {q} + [H]T {ro} + [K] {q} - {F} = {Qq}
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(32)

where {F} involves partia! derivatives of[J] relative to generalized elastic coordinates.

The Kinematics Equations were written using the Euler Parameter :

{<f} = ![no]{qo}2

whe~e [nO] is a matrix composed by components of the satellite angular velocity and
{q o} is the quaternion of satellite attitude.
In this study only the Gravity Gradient torque as external perturbation (Ref.14) and the

- frrst out-of-plane bending mode for each solar arrays were considered. The in-plane and
torsional modes were not considered. This could be assumed because the solar arrays are
short and somewhat rigid in the satellite studied.

- SIMULATION RESULTS

Satellite with Variable Geometry

The neural network control (NNC) was implemented and simulated using MECB
(Brazilian Complete Space Missions) satellite characteristics. They are small satellites
designed to test low Earth orbit communications and to perform Earth observation.
Immediately after orbit injection, the spacecraft shall perform a rate reduction, in order to
stop the tumbling and rotation motion imposed by the launcher's last stage and separation
torque. The satellite then opens 3 solar panels and enters in attitude acquisition in order to
point the panels to Sun. During the deployment, the mass motion of the solar, arrays
changes the satellite inertia and center of mass position. It was supposed that a neural net
eontroIs the attitude ofthe satellite in this phase. For attitude data aequisition, the satellite
uses a magnetometer and an analog sun sensor. Attitude is controlled with hydrazine
thrusters, on 3 axes, with a torque generation of 0.19 Nm maximum.

The network training proeess uses the attitude response to the torque control in
order to update the neural weights. A feedbaek learning control (FLC) algorithm (Ref.15)
was initially employed to train the network. However, FLC showed a strong competition
between the neural and the PID eontroIs. If the neural signal UC was opposite to the PID
output ud, then the satellite remained uneontrolled, and the feedback error kept the
proeess as if it as, in a steady state. Another important drawback of the FLC was the
absence of a feedbaek dynamical signal at the neural network input. If the network is
driven only bya referenee trajeetory, then it ean't generate torque when the trajectory
reaches the final point and the residual attitude errors is not corrected. A different
approach was adopted, as shown in Figure 1. The neural network receives inputs from the
trajectory error and the output torque. The learning signal, as in the FLC, comes from the
PID controller, but instead of combining both PID and NNC, only the network output
torque controIs the attitude. The learning process obtains the weights that minimize the
PID signal. Due to the delay in the feedback error, some torque oscillations may occur,
and the control becomes unstable. In order to avoid this behavior, the network output
torque was aIso added to the learning signal, as shown also in Figure 1. This procedure
not only guarantees the control stability, but also tends to minimize the control output and
therefore the hydrazine consumption.
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Unfortunately, the process of adjusting the PID gains and the network feedback
torque gain Kc was very difficult, as the stability of NNC teaching was assured only
within a reduced gain margin. lhe learning rate coefficient À had to be small, in order to
compensate the deviations ofthe learning signal from the unknown teaching control ud•

l' In the attitude simulations were carried out to teach the neural control,
·propagation time was 1000 s of duration, with time step of 1 seco lhe solar arrays were
opened at 1 = 500 s. Random initial conditions were selected uniformly distributed
between ± 45° attitude angles and ± 0,5 rd/s angular velocity. Reference trajectory l was
fIxed with nuU angular rate.

+
System

Fig. 1 - Feedback error Iearning control without PID supervisiono

Neural network inputs were composed by the attitude angles qf, rf and "', (from
a XYZ rotation), the components of the satellite angular velocity, COx, Oly and ffiz and the
solar array deployment sensor angle at time 1. In order to provide information about the
attitude dynamics,. these values at instant 1, 1-1 ... 1-3 were also given. lhe input vector
contains also the components of the output torque 't.h 'ty and 'tz at times 1-1 .,. 1-4. lhe
network was composed of 40 neurons in the hidden layer (with sigmoid activation
function) and 3 output neurons for torque generation with hard limited linear activation
function. lhe learning rate coefficient, À, was adopted as 0.001 after several trials with
different values. lhe PID controller gains was 0.08, 0.05 and 20, respectively. lhese
values were obtained by trials, based on learning convergence and stability and do not
reflect any optimization criteria.

lhe same is true for the Kc gain, adjusted in 0.02. After the training process (6000
interactions), the neural net was used to control the sateIlite starting with a different
attitude, shown in Figure 2. As can be seen, NNC can provide an effective attitude control
even without the presence of the PID supervisiono

lhe attitude motion was then compared with that of an exclusive PID controller,
with the same gains used to train the neural network. As shown in Figure 3, the PID
exerts a control on the satellite similar to that of the NNC when no geometry variation
occurs. lhe main difference, as expected, happens when the solar arrays are opened. In
such a situation the NCC performance is better than the PID, mainly due to the adaptation
caused by the deployment information.
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Fig. 3 - Satellite attitude during solar array deployment with PIO control.
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Satellite with Flexible Appendages
The control structure used in this implementation is known as Internal Model

Control (IMC) (Ref. 16). In this structure an Artificial Neural Network (ANN) is trained
to_behave as the dynamic system (direct model)o 800n after, a second ANN, the control
network is trained according to the inverse model, using in the training the retro
prôpagation of error in the direct model disturbances. The difference between the real
trajectory of the plant and the trajectory supplied by the direct model is used then in the
form of feedback to correct the state and to compensate the effects of the disturbances .
Due to the fact that the nets are not fed with information about the disturbances " d " that
affect the behavior of the system, they don't get to eliminate the nonlinear errors in the
trajectory due to the effects ofthese disturbances (Ref.17).

Filter ANN u(k)
Control

ANN
Model

J{,,(k)
+

FigA - Internal Model Control (IMC)

The neural network control (IMC) was implemented and simulated using a
satellite with configuration similar to MECB remote sensing satellite characteristics.
During the phase of fine pointing, the satellite will have a horizon infra-red and fme solar
sensor, positioned in an appropriate way on the main body ofthe satellite. In this phase of
mission the satellite will have three actuators of the type Reaction Wheel with a
maximum torque generation of 0,2 Nm, to supply the torque demanded by the control
system. .

The frrst step for the implementation of the neural control was to make the
identification of an ANN for the direct model, which had as inputs the control torque, the
displacements and the angular velocity at instants I, 1-1 and 1-2. After some tests varying
the number of neurons in each layer and verifying the error at the end of the net training,
it was adopted a configuration composed by 22 neurons in the input layer (21 elements
and one more due to the " bias "), 30 neurons in the frrst hidden layer, 10 neurons in the
second hidden layer and 6 neurons in the exit layer. The hyperbolic tangent activation
function was adopted for ali the neurons.

The second step was the identification of the inverse model. This training was
executed in an off-line way using the specialized inverse model (Ref. 3), with an input
vector similar to that used previously.The topology of the control network was
established taking as a basis the general lines delineated for the identification of the
direct model net; tests led to a configuration composed by 25 neurons in the input layer,
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30 neurons in the first hidden layer hide, 10 neurons in the second hidden layer and 3
neurons in the exit laYer. The hyperbolic tangent activation function was adopted for ali
the neurons.

;-
Simulations were made involving attitude maneuvers where perturbations during

orbit corrections were considered, with several initial conditions to evaluate the
performance of the proposed scheme. A typical maneuver is shown with the objective of
illustrating the performance ofthe control scheme. The Figures 5 and 6 show respectively
the response of the attitude angle and angular velocity in relation to the reference signal.

- Figure 7 shows the torque demanded to the actuator for the maneuver in the pitch axis. It
is observed from these results, that at the end ofthe pointing maneuver, the attitude angle
as well as the angular speed of the satellite are inside the acceptable accuracy. It is also
noticed that the torque applied to the rotor stayed limited to the compatible values.
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Fig. 5 - Attitude angle.0.10 0.00
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Fig. 7 - Torque demanded to the actuator.

In the tested situations, the neural control procedure was able to execute the
satellite pointing maneuver. The free oscillations in the extremity of the panels (not
shown in the previous graphs) stayed quite small with values ofthe order of 3xlO-5 mm,
not introducing any type of sensitive disturbance in the attitude of the vehicle.

CONCLUSIONS

Two attitude control schemes using multilayer perceptron neural networks were
developed and tested under simulated conditions of use. The first one was an attitude
controIler for a satellite with variable geometry derived from the feedback error learning
algorithm, without the PID control supervisiono The results indicated that the performance
of the NNC can, under certain conditions, be better than that of a conventional PID
controIler. The second one was an attitude controler for a satellite with flexible

appendages using the IMC control procedure. Results obtained with this scheme are very
encouraging. It could be verified that the strong point of ANNs is really their capacity of
non linear mapping, mainly in the identification of the System Direct ModeI. In the
Inverse Model identification, special care should be taken concerning the choice of the
variables to represent the dynamic system, since they play a fundamental role in
obtaining the correct inverse mapping ofthe plant.

The control schemes with " off-line " training of the ANNs facilitate a more
immediate application, however its reliability and robustness are Iimited, because such
controllers possess a restricted operation and are not capable to compensate eventual
disturbances or spurious interactions between the environrnent and the plant to be
controIled. Further studies shall address adaptive schemes using special computational
structures and training a1gorithms for "on-line" retraining ofthe ANNs.

BmuOGRAPHY

1. Demuth, H; Beale, MNeuraJ network too/bax user's guide. Natick, MA. Math Works, 1992.

578



2. Rios Neto, A.; Rao, K. R A study on the on board artifICial satellite orbit propagations using artificial
neural networlcs. Proceedings ofthe 11th International Astrondynamics Symposium, Gifu, Japan,1996.

3. tIunt, K. J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P. J. Neural networks for control systems - a
survey. Automatica. 28 (6):1083-1112,1992.

4. Nguyen, D. R; Widrow, B. Neural networks for self-learning control systems. IEEE Control Systems
Magazine, to (3), Apr. 1990.

_ 5. Chen, S.; Billings, S. A. Neural networks for nonlinear dynamic system modelling and identification.
lnternational Journal o/Control, 56 (2):319-346, 1992.

6. Batfes, P. T.; Shelton, R O.; Phillips, T. A. NETS. a neural network development tool. Lyndon B.
Johnson Space Center, JSC-23366, 1991.

7. Billings, S. A.; Jamaluddin, R B.; Chen, S. Properties of neural networks with applications to
modelling non-linear dynamical systems. lnternational Journal o/ Controlo 55 (I): 193-224, 1992

8. Zurada, J. M lntroduction to Artificial Neural Systems, West Publishing Co. 1992.

9. Rios Neto, A. Stochasttic Optimal Linear Parameters Estimation and Neural Nets Training in Systems
Modeling. Journal o/the Brazilian Soe. Mechanical Sciences, VoI. XIX, nº 2, 138-146, 1997.

10. Gelb, A. Applied Optimal Estimation. The M.I.T. Press, MA, 1974.

11. Crandall, S. R; Komopp, D. C.; Kurtz Jr, E. F.; Pridmore-Brown, D. C.; Dynamics o/ mechanical and
electromechanical systems. Mc Graw-Hill, NY, 1968.

12. Wertz, J. R Spacecraft attitude determination and control, London, D. Reidel, 1978 (Astrophysics and
Space Science Library).

13. Meirovitch, L. Methodo/ Ana/ytical Dytiamics, New York, McGraw-Hill, 1970.

14. Kaplan, M. H. Modem Spacecraft Dynamics. USA, Jhon Wiley & Sons Inc., 1973.

15. Chen, S.; Billings, S. A.; Grant, P. M. Non-linear system identification using neural networks.
lnternational Journal o/Control, 51 (6):1191-1214, June 1990.

16. Narendra, K. S.; Parthasarathy, K. Identification and control for dynamic systems using neural
networks. IEEE Transactions on Neural Networlcs, I, 1990.

17. Garcia, C. E. ; Morari, M. Internal model control - I. A Unifying Review ans Some New Results, lnd.
Eng. Chem. Process Des. Dev., voI. 21, pp. 308-323, 1982.

579


