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ABSTRACf: The problem of orbit controI in a remote sensing satellite is
analyzed, with the aim to determine the major perturbations on the orbit
and their effects. The mission requirements of the Brazilian Remote
Sensing Satellite are applied to the problem, and the corrections and
maintenance of the orbital elements are identified. The results showed
that only semimajor axis corrections will be necessary to keep the
groundtrace repetitivity and the orbit circularity.

1. INTRODUCflON

A low Earth orbit like the orbit of the Brazilian Remote Sensing
Satellite (BRSS) is subject to the action of several forces such as drag,
solar radiation pressure, gravitational (including Earth, Sun and Moon),
ete. Some of these forces modify one orbital parameter in a lesser
extent than others in such a way that it can be assumed each parameter
as being perturbed by the action of a single force. Table 1 shows the
principal factor that changes each orbital parameter of a sun-synchronous
orbit.

The influence of these forces on the orbit must be determined in
such a way to compute the hydrazin consumption during orbital maneuvers
and maintenance. An important result is also to provide values for the
Orbit ContraI System designo The effects of these perturbations are
analyzedseparatelyin the following sections.
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2.1. SEMIMAJOR AXIS

The semimajor axis decay due to the atmospheric drag can be
linearized near the nominal altitude:

.•

(1)

where a is the semimajor axis just after a rising maneuver and aI is
given byc(Medeiros, 1983, equations 2.43,2.45 and 2.48):

(2)

for circular orbits. In this expression, p is the atmospheric density, Cd
is the drag coefficient, Ar is the spacecraft frontal area and m is the
spacecraft mass.

Il = 398600 km3/s2

~ = 7017.89 km (nominal semimajor axis)C =3.8
Ad=0.665 m2

mr = 150 kg (at end oflife)

Table 1. The main perturbations on the BRSS orbital parameters

Semimajor axis

Eccentricity

Inclination

Right ascension of
the ascending node

Perigee argument

Mean anomaly

a

e

ro

M

Aerodynamic drag

Drag, solar radiation

Sun and Moon gravity

Earth gravitational
field (flatteness)

Earth gravitational
field

Earth gravitational
field

The atmospheric density is related to the exospheric temperature by
(Jacchia, 1977):

T. = 5.48 F 0.8 + 101.8 pO.4 (3)1 m
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For the launch date, the solar fIux F (at 10.7 em) and the averaged
solar fIux F are supposed to be equal to 260 (10-22 W/m2Hz) maximum,
with 97% o'f confidence. To the exospheric temperature should be added
the contribution due to the geomagnetic activity. The geomagnetic index
Kp is strongly affected by the solar storms, rising from the quiet daily
values (less than 2) to the geomagnetic storms (during solar fiare events),
reaching 5 to 8. Jacchia gives the expression for the exospheric
temperature variation as a function of the geomagnetic activity.

~GTi = 57°.5 Kp (I + 0.027 eO.4KP)sin4 <1>'

where <1>'is the magnetic latitude:

sin <1>'= 0.9792 sin <I>+ 0.2028 cos <I>cos(L - 291°)

(4)

(5)

and L, <I>are the longitude and latitude. Using a mean latitude equal to
one half of the orbit inclination (41°) and a longitude such that
cos(L-291 °)=1 (in order to maximize the exospheric temperature for safety
purposes), it results <1>'=60°.67 and ~GT. = 442°K and, hence, T. = 1410 +
307 = 171TK. 1 1

Adopting an exospheric temperature of l8000K and with the given
orbit altitude, it can be found from Jacchia (table 11) that p = 1.66 10-12

kg/m3 and, finally, aI = -128 m/day.
The orbit decay is related with the repetition factor. When the

semimajor axis is greater than the nominal value (639.73 km), the orbital
period is greater than the nominal one. The satellite ground trace then
presents a left motion rei ative to the nominal ground trace (figure 1).
As the semimajor axis decreases due to drag, the motion ceases (at the
nominal altitude) and then starts a right drift. The maximum drift
imposed by mission requirements is 15 km at equator. The strategy is to
make an orbit maneuver to increase the semimajor axis (and to nullify
the eccentricity) every time the ground trace reaches the maximum
deviation at the right of the nominal trace. The drift is given by:

D = ReS {[l-(aJai!2] t + [(3/4)(aJa/!2(a/aJ] t2}

Re = 6378.16 km (Earth radius)

S = 360°.98565/day

(6)

After a time interval of t/2 where t is the time between two
semimajor axis maneuvers, the satellite altituCde is equal to the nominal
value and

(7)
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Solving the above equations for ac' it results that:

ac = 7018.84 km

The semimajor axis maneuver increases the satellite altitude by

and the time between two consecutive maneuvers is 14.8 days.
To compute the total hydrazine consumption in the maneuvers, other

than 1800·K exospheric temperature must be used, as the strongly solar
fiare events do not occur every day. The results for more conservative
values such as T. = 1500·K are: a = 56.4 m/day, Aa = 1.26 km and t =
22.3 days. The lhydrazine consump\ion is 47 g per' maneuver and 1.55 ckg
during the total spacecraft lifetime.

Fig. I. The ground trace drlft as function of the orbital altitude.
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Figure 2 shows the spacecraft altitude relative to the nominal
value, as a function of the ground trace deviation, and the maneuver
strategy.

As the orbit decay rate aI depends on the solar flux F which is
almost unpredictable, the altitude after the maneuver, a, must be
calculated in a way to guarantee that the maximum ground trlke deviation
from its nominal sulrsatellite trajectory is kept between the limits. If
one uses a value for the solar flux greater than the real one (resulting a
high atmospheric density), the real orbit decay would be smaller thlÚl the
predicted one and, hence, it is possible that the ground trace exceeds
the upper limit (Figure 3). On the other hand, if the predicted solar flux
is smaller than the real one, the real orbit decay would be greater and
the ground trace reaches the lower limit before the time between
maneuvers has ended. Nevertheless, from the mission requirement
impositions, the flrst result is more crictical than the second. lt leads to
use a minimum estimate for the solar flux in the computations of a, in
order to avoid the ground trace to exceed the limits. lt is suggesteà to
subtract one to three solar flux standard deviations from its mean value,
for example,in the aI calculation.

I ~-'
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Fig 2. RSS orbit decay.
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Fig. 3. Ground trace deviation for several semimajor axis decay rate.

For example, considering a minimum solar flux estimate of 150 with
quiet geomagnetic days, the resulting orbit decay is 4.1 m/day, and hence,
~a = 0.34 km and t = 82.6 days. Nevertheless, if the actual solar flux is
240 (with strong so1ar storms), a new orbit correction will be necessary
after 5.3 days.

2.2. ECCENTRICITY

The orbital eccentricity is affected by the solar radiation pressure
and, to a lesser extent, by the aerodynamic drag. Kozai (1961) developed
an expression to compute the eccentricity variation in one orbit
(supposing an initially circular orbit) due to the radiation pressure:

0e = a2 Fs [(1/4) S(f)

+ [2T(f) dEEl

cos 2E + (1/4) T(f) sin 2E]E~El

(8)

where S(f) and T(f) are trigonometric functions of the true anomaly f,
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and E is the eccentric anomaly. E1 and E2 are the eccentric anomalies
at the entrance and exit from Earth shadow, respectively. F is the solar
radiation force per unit of mass, divided by the Earth S gravitational
constant Il. The computations lead to:

e = 8 x lO-8/day,

a value too small to be considered.
eccentricity variation due to drag will
can also be neglected. Gravitational
variation on the eccentricity.

2.3. INCLINA TION

The long period term of the
always be decreasing and, thus,
forces do not introduce secular

The orbit inclination presents a short time vanaUon due to the
gravitational force of the Moon. Secular variation in the inclination is
more influenced by the gravitational force of the Sun:

di/dt = -(3no2/4n) sin i cos4 (E/2) sin 2(ao - n) (9)

as introduced by Kozai. n and n are the mean motion of the Sun
(relative to Earth) and sateRite, respectively. e is the ecliptic inclination
and ao - n is related to the equator crossing hour, which is almost
constant:

for H = 20:30 hs ascending node. The Sun and satellite mean motion are
given by:

no = O".98565/day

n = (1J./~3)1f2 = 531O"/day,

resulting

di/dt = - O".044/year
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This vanatlon will affect the repetition factor Q = 14.75, fIXed by
mission requirements. As the repetition factor is a function of the
semimajor axis and inclination, an inclination motion can be compensated
for by an appropriate correction of the semimajor axis, so as to
guarantee the repetition factor stability:

Q = (M + ro) I (9 + Ó)

where M is the mean anoma1y time derivative:

(10)

(11)

with J2 being the second order ronal gravitational coefficient and Re the
equatonal Earth radius. The perigee argument and the right ascension of
the ascending node time derivatives are:

ro = - [JzRz iA (2 - 2.5 sin2 i)] I [aZ(l - eZ)Z]

Ó = - [3 JzRz eM cos i] I [2 aZ( 1 - eZ)Z]

(12)

(13)

As the orbit is near circular, neglecting the second order terms in
Jz and solving the Q expression for n, it has:

and

with

n = (Q 9) I [1 + A (4 cosz i + Q cos i-I)] (14)

(15)

(16)

The equations 14, 15 and 16 can be solved iteratively, as A is also
a function of the semimajor axis Q. Adopting an inclination of:

ii = ia - (di/dt) (tJ2) = 97·.984



93

at the begining of the total spacecraft lifetime te = 2 years, at the end
of life, the inclinationwill be:

ie= io+ (di/dt) (til) = 97·.896

The corresponding semimajor axis for these two inclinations are: a =
7017.965 km (639.80 km altitude) and a = 7017.815 km (639.65 lcm
altitude). As the difference between the~ two values is less than the
semimajor axis increment during a maneuver, the effect on the altitude
due to the variation in the inclination can be included in the semimajor
axis rising maneuver.

2.4. RIGIU ASCENSION OF THE ASCENPING NQDE

To maintain the orbit in a synchronism with the sun motion in the
equator plane, both inclination and altitude should be controlled during
the satellite lifetime. As only semimajor axis maneuvers are intended to
be made, it should be verified if the inclination variation does not modify
the ascendingnode motion and, consequently,looses the syncronism.

In a sun-synchronous orbit, the right ascensiontime variation is:

(17)

For a 639.73 km altitude orbit, the corresponding synchronous
inclination is 97.94 degrees. This value does not remain constant during
the satellite lifetime: due to the gravitational forces of Sun and Moon,
the inclinationpresents a linear term with time,

i = io+ (di/dt) t

that causesa variationon the ascendingnode rate:

for a circular orbit. After integration, it has:

(18)

(19)

(20)
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where no and n are respeetively the aseending nade and its time
derivative at t = O. The equator erossing hour is given by:

where ao is the Sun's right aseension. In the nominal orbit, both n and
ao preeess at the same rate in the equator plane and, thus, it ean be
defined:

no = nn +t1no
. . .

no = nn +t1no

where n and n are the right aseension of the aseending nade and its

time den'{,ative, sapposing no variation in the inclination. t1no. and t1Qoshould be ealculated so as to guarantee the synehronism with :Sun during
the satellite lifetime. By substituting these equations into the equator
erossing hour formulation, it has:

(21)

where t1H is the variation on the equator erossing hour. Mission
requirements have fixed the maximum allowable value for t1H in +/-15
minu.tes (eorresponding to an are of +/-3°.75). This equation ean be
solved for by minimizing the maximum equator erossing time variation
during the 2 years mission lifetime. Then:

d t1H/dt = O

t1H = - t1no

for t = t.J2

for t = t.J2

with te = 2 years. The first eondition leads to:

Substituting the values io
ao = 7017.89 km yields:

t1no = 1°.98/year, or

97".94, di/dt

(22)

- 0°.044 /year and
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n = O·.?91/day.

The orbital inclination that causes a drift of O·.991/day is

io = 97".984

Consequently, the satellite should 00 injected with an initial
inclination of 97· .984. After one year, the inclination decreases to its
nominal value of 97.94 degrees and, at the end of life, the inclination will
0097".896.

From the second condition, it results:

which corresponds to a 1 minute and 59 seconds of advance at the
launch nominal time. With this procedure, the maximum deviation of the
equator crossing hour from its nominal value due only to the change in
the orbit inclination will 00

~Hmax = 2 ~no= 3.96 minutes.

It can be concluded that only semimajor axis combined with
eccentricity correction manouvers will be necessary to keep the
repetibility of the orbit ground trace.

3. CONCLUSIONS

The orbit decay and semimajor axis manouvers were simulated in a
numerical example. The effects of the air drag, solar radiation pressure,
Sun and Moon gravitational forces and Earth geopotential (J ) were taken
into account in the computations. The orbit was numericlily integrated
and the ground trace deviation from its nominal value at the equator
crossing on the ascending node was monitored. The velocity increment
for the manouvers was computed by subtracting one solar flux standard
deviation (45. 10-22 W/m2Hz) from its mean value (198. 10-22 W/m2Hz at
the simulation epoch starting on 1/1/1981) and neglecting the
contribution due to geomagnetic activity. The same values for the
aerodynamic and geometric properties of the spacecraft, as shown in
Section 2.1, were adopted. The resulting semimajor axis and velocity
increment were:
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.1a = 340 m

.1v = 0.183 m/s.

The results of the integration are shown in figure 4. The
manouvers are computed whenever the ground trace deviation reaches its
upper value, +15 km. As alI the velocity increments have the same
magnitude for alI the manouvers, the differences between the minimum
ground trace deviations (figure 4) are only due to the increasing solar
fluxo In fact, during simulations, the observed mean solar flux has begun
with the value 175 and ended with the value 206.
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