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$EVWUDFW�
A previous neural network algorithm for multipath mitigation on GPS-based attitude determination is 
adapted to space applications, where the attitude is unknown in the training process. One considers a 
user spacecraft with at least three GPS antennas and attitude determined from single differences of 
the GPS carrier phase L1. A recipe inspired on the on-board calibration problem for star sensors is 
used to cope with the lack of observability that arises when attitude is unknown. The algorithm was 
tested with simulated data based on a ground experiment and was able to reduce the multipath effect 
in more than 50%. 

1RPHQFODWXUH�
λ  Wavelength of carrier phase L1. 

�E  Baseline vector from the master antenna to the Lth slave antenna, in the antenna frame. 

��9  Line of sight unit vector of Sth GPS satellite in the antenna frame at Nth sample time.  

��Y  Line of sight vector of Sth GPS satellite in stereographic coordinates at Nth sample time. 

Yδ  Distortion vector in stereographic coordinates. 
��� ,φ  Single-difference of carrier phase of Sth GPS satellite and Lth baseline at at Nth sample time. 

�
•  Transpose of a matrix. 

LPh
•  Learning Phase sample average. 

EPh
•  Evaluation Phase sample average. 

O
•  Sample average over the whole antenna field of view. 

∗
•  Sample average over a neighborhood of 5o from the antenna zenith. 

•~  Calibrated value. 

 

��� ,QWURGXFWLRQ�
 
In this paper, one addresses the spacecraft attitude determination problem from GPS interferometry 
only, envisaging future applications in the Brazilian space program. The aim of the work is to reduce 
attitude determination errors by means of multipath mitigation. One considers a set of at least three 
antennas linked to a single GPS receiver. 
 
In a previous work, the authors proposed an algorithm for multipath mitigation using neural network 
[1]. That algorithm has two operating modes: the calibration mode and the correction mode. In the 
calibration mode the single difference of carrier phases are processed during a period long enough to 
assure that the GPS line-of-sights fill the effective field of view of the antenna set. In this mode attitude 
is supposed to be known and the neural network learns the distortion pattern in the GPS line-of-sight 
vectors due to multipath, as estimated by the observables in the antenna frame. In the correction 
mode, the neural network predicts and corrects the multipath effects. As a consequence, attitude 
determination accuracy is improved. 
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This paper adapts that algorithm to space applications where attitude is unknown in the calibration 
mode also. In this case there is a loss of observability of three degrees of freedom due to the fact that 
part of the multipath effect can be modeled as a three-axis rotation of the antenna frame. The 
proposed solution is based on the Shuster´s recipe for the polynomial calibration model that was 
originally stated in the context of on-board star sensor calibration [2] and afterwards applied to on-
board multipath mitigation with a polynomial model [3]. 
 
The algorithm is tested with simulation data from a LEO Earth pointed satellite, based on ground 
experiment results. The results are compared with those obtained with a priori attitude knowledge. 

���$WWLWXGH�'HWHUPLQDWLRQ�IURP�*36�,QWHUIHURPHWU\�DQG�WKH�1HHG�IRU�0XOWLSDWK�0LWLJDWLRQ�
 
The between-antennas single difference of the GPS carrier phase L1 is related with the line of sight of 
the GPS satellite by the interferometry equation: 
 

+⋅=
	
� 9E� 
�

,φλ  observation errors,        (1) 

 
with both �E  and 

��9  written in the antenna frame. 
 

This set of equations can be solved for the line of sight unit-vector 
��9  provided there are at least two 

non-parallel antenna baselines. The coordinates of the line of sight of a GPS satellite in the reference 
frame are also known, from the ephemeris of the GPS satellites and the user spacecraft position. In 
this case, any well-known algorithm that solves the Wahba problem [4] can be used to evaluate the 
attitude of the user spacecraft. For instance, the QUEST algorithm [5] based on the q-method or the 
profile matrix algorithm [6] based on single value decomposition. The last one is used in this paper. 
 
Accuracy of attitude determination from GPS observations depends mainly on the baseline lengths 
and the error present in the observations like random noise, baseline uncertainty (including the 
antenna phase center), and multipath delay. Baseline length is limited by the spacecraft mechanical 
architecture, but observation errors that cause apparent distortions on the GPS line of sights can be 
mitigated. In space applications, the multipath delay is mainly a function of the direction of the line of 
sight in the antenna frame and present a constant distortion pattern that can be estimated as far as 
the satellite architecture around the antennas remains unchanged. 
 
Although the distortion vector is a three-dimensional vector, it has only two degrees of freedom, since 
the line of sights are constrained to be unit vectors. Therefore, a distortion model needs to represent it 
in planar coordinates. Now, GPS antennas are omni-directional, but the observation errors are 
stronger in signals with low elevations with respect to the antenna plane than in signals coming from 
the antenna zenith. For this reason, the orthogonal projection of the distortion vector in the antenna 
plane is not suitable to the problem because it masks the radial component of distortions close to the 
antenna plane. The stereographic projection (see Figure 1) avoids this hindrance and is adopted here:  
 

 

 
 

Figure 1. The Stereographic Projection 

 Eye Point 

X 
Y 

Celestial 
Sphere 

GPS line 
of sight 

Stereographic 
Projection 



 3 

��
�

99
9Y

+







=
1

2�    ⇔    YYYY
Y9

⋅+







⋅−
=

4

1

4

4
.      (2) 

���1HXUDO�1HWZRUNV�
 
A Neural Network is an entity composed of individual processing units called neurons grouped in 
layers. The network is structured in such a way that the output of one neuron is the input of one or 
more neurons. If there is at least one closed path in the neuron’s connections, meaning that the input 
of a given neuron comes from the combination of its output and the output of other neurons, then the 
network is said to be recurrent. In case that there is no such closed path, then the neural network is 
called a feedforward network (Figure 2). Feedfoward networks have, in general, one input layer 
composed of one neuron for each network input and an output layer, which also presents one neuron 
for each network output. One or more hidden layers separate the network input from its output.  In 
such feedforward network the neuron in a given layer applies each an activation function I to the sum 
of the weighted outputs of the previous layer. For hidden and input layers, the activation function 
generally is a biased nonlinear differentiable function like the sigmoid or hyperbolic tangent, for 
instance, while the output layer can be a linear function [7]. The process to obtaining the network 
weights is called supervised training, once the computational method calculates the weights increment 
at each step based on the error generated by the network output (compared with the expected values) 
and in some optimization rule. Training consists of an interactive process in which the weights are 
adjusted by propagating the output error through the network layers. Nonlinear continuous functions 
can be approximated with a given accuracy by a 2 layer neural net with linear function in the output 
and the sigmoid activation function in the input layer [8,9]: 
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A feedforward network composed by O layers, as shown in Figure 2, can be seen as a mapping 

function with Q � �input elements and Q �  output parameters. If 
�
�[  is the output of the Lth neuron of layer 

N, 
�
� �Z  is the weight of the Mth input (coming from the Mth neuron of the preceding layer) and 

�I  is the 

activation function of layer N, then:  
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where 

#
$E  is the neuron bias that allows the neuron to present a non-null output for a null input.  
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Figure 2. A feedforward neural network 

 
Generally the neuron bias and the weights can be obtained at the same time, by assuming the 
inclusion of new unit input for the bias. In a vector-matrix representation form the preceding equation 
yields 
 

( ) ( )1−==
(((((( [:I[I[   ,        (5) 

 
where the weight matrix of layer N,�

): , includes the neuron bias: 
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The dimensions of the output vector 

3[  and the weight matrix 
4:  are now Q 5 +1 and Q 5  × Q 576 8 +1, 

respectively. 
 
The increasing number of neurons or hidden layers normally makes the neural net to better 
approximate the target data. Nevertheless, the capacity of generalization, i. e. the ability to interpolate 
between points where the neural net was not trained is more accentuated on nets with few neurons or 
hidden layer [10]. The number of neurons in the hidden layers is important under the approximation 
point of view: few neurons tend to decrease the stability and result bad approximation, too much 
neurons cause oscillation on the output between the trained points [11]. 

 
The training process normally minimizes the output error through the application of an optimization 
method, like the steepest descent. These methods need to know with some extent how the net output 
varies with respect to a given neuron weight. This can be achieved with the backpropagation algorithm 
developed by Werbos [7] which obtains the partial derivative of the output elements in a recursive way. 
In matrix form, the derivative of the output vector with respect to the Mth weight of the Lth neuron of the 
Nth layer results the expression: 
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where 

>
' is the backpropagation matrix, obtained from: 
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with initial condition 

@@ )=' , where 
A)  is a diagonal matrix with the derivatives of the activation 

function 
BI : 
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The steepest descent method (sometimes misunderstood with the backpropagation algorithm), shows, 
as the backpropagation, a high degree of parallelism and simplicity. The weights are corrected based 
on the minimization of the neural net output error. Weight updating starts at the net output layer and 
then the error is backpropagated to the preceding layer in order to compute its weight corrections. The 
minimization criterion uses the network output quadratic error as the performance index: 
 

)( )()( T WWW-
2

1= ,          (10) 

 
where )( W is the network output error at time W, defined by: 
 

 )()()( WWW F \\ −= ,          (11) 
 

where  )(WG\ and  )(W\ are expected and actual network output. Weight updates of layer N are 
performed using: 
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HHH -WW ∇−=+  )()1( α:: ,         (12) 
 
where the gradient of the square backpropagated error

I-∇  comes from the backpropagation matrix: 
 

T1−−=∇
JKJJ- [' .          (13) 

 
Convergence of the weights depends on the adjusting of the learning rate coefficient α ranging from 0 
to 1. Small values cause the learning process to be too slowly, while high gain tends to unstable the 
weight updates. 
 
Steepest descent or gradient method is today the most common training procedure. It is ease to 
implement in computers, it is very fast but it converges in a strongly slow rate. This certainly is the 
main reason of the extremely long training times in most neural net applications. Nevertheless, there 
are other training methods that show improved learning speed, as the least square [12] or the 
Levenberg-Marquardt algorithm [13].  
 
The neural net error after the training process depends strongly of the training set. Care must be taken 
in choosing the training data in order to evenly fulfill the input-output state space, so the weights can 
be adjusted globally. Unfortunately it is difficult, not to say impossible, to identify such a global training 
set in some problems [14] as the one presented here. On the other side, at least in theory, the training 
set do not need to be very large, by taking into consideration the network ability in acquiring enough 
system information by generalizing and interpolating the input data.  
 
The neural network implemented in this paper has one hidden layer and activating function of 
hyperbolic tangent type. The training method is the steepest descent with an adaptive α value, as 
follows. One starts with α=1. Each time a step increases the performance index, it is canceled and α is 
divided by 2. If a step decreases the performance index, in the next step α is doubled, except if it is 
already 1. 

���7KH�0XOWLSDWK�0LWLJDWLRQ�$OJRULWKP�DQG�2Q�%RDUG�$SSOLFDWLRQ�$VSHFWV�
 
The proposed algorithm to mitigate the multipath delay effect has two modes. The first one is the 
calibration mode that takes advantage from the spacecraft relative motion with respect to the GPS 
constellation to store GPS line of sights coming from all possible directions during a period called 
learning phase. The stored observations are then compared with their respective predicted values. 
The stereographic coordinates of the residuals are the observed distortions. The neural network is 
then trained to learn the observed distortion pattern. 
 
Once the calibration mode is finished the algorithm enter in the correction mode where the distortions 
on the observed line of sights are predicted by the neural network and subtracted from them before 
the attitude evaluation. 
 
If the spacecraft attitude is accurately known by other means than the GPS observations during the 
learning phase, the line of sight observations can be easily predicted from its coordinates in the 
reference frame. In this case the algorithm works in the aided calibration mode. Otherwise, the attitude 
matrix must be first estimated at every time based on the distorted observations that one is trying to 
calibrate, on an iterative algorithm. In this case, the algorithm works in the self-calibration mode. It 
starts estimating the attitude with the non-calibrated observations. Then the neural network is trained 
with the obtained residuals. Once it learns the distortion pattern, the observations are corrected and 
the attitude is refined. The process cycle repeats until the solution stabilizes. 

���7KH�6KXVWHU¶V�5HFLSH�
 
There is a subtle question related with the possibility of the algorithm to diverge in the self-calibration 
mode. Indeed it may be shown that the problem of observability arises and may cause divergence. 
The problem is due to the fact that usually in space applications, one cannot detect post-launch 
misalignment of the antenna frame with respect to the spacecraft. It is indistinguishable from a rotation 
of the spacecraft as a whole. Therefore, the algorithm is unable to determine correctly a distortion 
pattern equivalent to a misalignment due to an intrinsic lack of observability of three degrees of 
freedom. 
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The way to cope with this question is the Shuster’s recipe adapted to the multipath mitigation problem: 
the distortion part equivalent to a misalignment must vanish around the antenna zenith. The recipe is 
implemented as follows: 

a) In the self-calibration mode, each time the neural network learns a given distortion pattern, 
one evaluate the distortions in a circle with radius 5o; 

b) The equivalent misalignment vector  in the antenna zenith is given by: 

∗
−= LM Yδ  ,   

∗
= NO Yδ  ,   

12 −

∗∗
−= YYYYY PQQPR δδ  ;   (14) 

c) Before attitude is refined by means of the corrected line of sights, they are all rotated by the 
negative of the equivalent misalignment vector. 

���1XPHULFDO�5HVXOWV�
 
The algorithm was tested with digital simulation of a LEO Earth pointed satellite in a Sun synchronous 
orbit. The satellite was equipped with four GPS antennas on a plane normal to the satellite yaw axis, in 
the corners of a square with side 0.80m long. 
 
In the learning phase, the satellite attitude was such that the x-axis of the antenna frame was in the roll 
direction and the y-axis in the pitch direction. In the evaluation phase the satellite was rotated by 90 

degrees around the yaw axis in order to emphasize that the observed line of sights then came from 
other directions than those observed in the learning phase. Figure 3 shows the path of the GPS 
satellites with respect to the antenna frame in stereographic coordinates in both learning phase and 
evaluation phase, respectively, while Table 1 presents the input parameters of the simulation. The 
evolution of the number of GPS satellites at sight can be seen in Figure 4. 

 
Figure 3.  Path of GPS satellites over the field of view of the GPS antennas during: a) the learning 

phase (12 hours); b) the evaluation phase (6 hours). 
 

 
Figure 4. Number of GPS satellites at sight during the simulation 
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Table 1. Simulation parameters 
Orbit altitude:  650 km 

Orbit inclination: 98o 
Attitude: Earth oriented, antenna frame facing zenith 

Number and geometry of GPS antennas: 4 antennas in the corners of a square with side 0.80m long 
Range of noise level on L1 carrier phase: 0.35mm at the antenna zenith;  3.5mm at antenna plane. 

RMS of multipath delay:  6mm 
Antenna mask angle: 15o 

Sampling interval: 60s 
Sample period in the learning phase: 12 hours 

Sample period in the evaluation phase: 6 hours 
Number of neurons in the hidden layer: 60 

 
An empirical model based on real data taken at DLR on a turntable, under the effect of strong, 
intentional multipath, was used to simulate the multipath. In the experiment, two antennas formed a 
baseline one meter long, where two metal plates were inserted, one in between the antennas and the 
other outwards (see Figure 5). As the turntable rotated around the local vertical, the multipath delay 
was observed from all azimuth angles and from eight different elevations corresponding to the 
elevation of the GPS satellites at sight at that time, as exemplified in Figure 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Two GPS antennas on a turntable with the interference of two metal plates. DLR, 1999. 
 

A series of surface spherical harmonics of 30th order was then fitted to those data and used as a 
model to simulate the multipath delay on the master antenna of the satellite. This empiric model was 
also used to simulate the multipath delay of the three slave antennas, with the same zonal and 
tesseral amplitudes of the first one, but all randomly phased. The results can be seen in Figure 7 in 
stereographic coordinates in the antenna frame. 
 

 
Figure 6. Multipath delay in L1-cycles from some representative elevations: 17.5o; 32.5o; and 52.5o. 

 
When the line of sight of a GPS satellite is determined from the single differences of carrier phase 
under the effect of such multipath delays, they present distortions with different amplitudes and in 
different directions. The distortion pattern is quite irregular and more intense close to the edges of the 
antenna field of view where the metal plates were placed in the experiment. Figure 8a shows the 
pattern of the distortion arrows in stereographic coordinates in the antenna frame, the contour lines 
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corresponding to the different levels of distortion intensity. Figure 8b shows the same pattern as 
learned by the neural network. 
 

 

 
Figure 7. Multipath delay pattern in stereographic coordinates in the antenna frame for the master 

antenna (a) and the slave antennas (b), (c) and (d). 
 

 

      
Figure 8. The distortion pattern due to multipath, in stereographic coordinates in the antenna frame: a) 

before calibration; b) after calibration.  
 
Figures 9a and 9b show respectively the effect of the sample period and the number of neurons in the 
hidden layer of the neural network on the algorithm performance. The efficiency of distortion prediction 
η is defined here as the ratio between the accuracy gain in the evaluation phase and the learning 
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phase in terms of the direction of the observed line of sights. The distortion reduction factor γ is the 
accuracy gain for hypothetic noise-free observations of the line of sights from the whole antenna field 
of view. The performance parameters η and γ are respectively given by: 
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Figure 9a. Effect of the sample period on 

multipath mitigation. 

 
Figure 9b. Effect of the number of neurons on 

multipath mitigation.
 
From those results, one may see that if the learning phase is too short, the ability to predict the 
distortion is poor. Also, if the number of neurons in the hidden layer is too small, the accuracy gain is 
not as good as it could be. Thus, it was selected a sample period of 12 hours and 60 neurons at the 
hidden layer. Figure 10a shows the sampled distribution function of the distortion intensity in the 
evaluation phase in three different cases: before calibration; after calibration when a priori attitude 
knowledge is available (aided calibration); and after a calibration based on the GPS observations only 
(self-calibration). Analogously, Figure 10b shows the sample distribution function of the total attitude 
error (module of the three axis error vector) in the evaluation phase for the same cases. 
 

 
Figure 10a. Distribution of distortion in the 

observed line-of-sights. 

 
Figure 10b. Distribution of attitude total error.

 
Table 2 summarizes the algorithm performance in terms of accuracy in the simulation. 
 

Table 2. Performance parameters in arc-min. 
Performance Parameter Before calibration After aided calibration After self-calibration 
Global distortion (noise-free) 62.28 22.58 26.00 
Distortion in the evaluation phase 84.73 29.13 32.22 
Roll-Pitch error (1σ) 19.10 8.08 12.78 
Yaw error (1σ) 15.56 7.13 10.26 
Total attitude error (1σ) 31.17 13.47 20.78 
Total attitude error (95%) 57.39 22.03 32.40 
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An algorithm for multipath mitigation by neural network has been developed and implemented. The 
algorithm improves the accuracy of spacecraft attitude determination from GPS observations only. In 
the specific test scenario, the algorithm was able to improve the attitude accuracy level from 1o to 0.5o. 
Also, the distortion level on the observed GPS line of sight due to multipath only decreased from 1o to 
less than 0.5o.  
 
Besides the multipath scenario, the absolute accuracy level achieved in a given application depends 
on several other factors independent from the algorithm itself, as the baseline length, the noise level, 
the satellite attitude and the correspondent number and geometric distribution of the GPS satellites at 
sight. Nevertheless, the results indicate that the algorithm has a potential to substantially reduce the 
effect of multipath on board of a spacecraft so improving the accuracy of its attitude determination. 
  
The Shuster’s recipe applied to the self-calibration problem was proven to be efficient in avoiding the 
algorithm divergence that was otherwise present. Furthermore, the existence of abundant attitude 
GPS observations assured a considerable accuracy gain even in the absence of a priori attitude 
knowledge. 
 
The algorithm represents an encouraging step envisaging future applications of attitude determination 
with GPS in the context of the Brazilian space activities. More investigations with data from a GPS 
simulator under more realistic flight conditions are foreseen. 
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